
National Semiconductor
Pub. No. 42000948
Order No. ISP-85 994Y SC/MP

Programming
And Assembler

Manual

Simple Cost-effective
MicroProcessor

SC/MP

Publication Number 4200094B
Order Number ISP-8S/994 Y

PROGRAMMING AND ASSEMBLER MANUAL

February 1976

© National Semiconductor Corporation
2900 Semiconductor Drive

Santa Clara, California 95051

PREFACE

The SC/MP Programming and Assembler Manual provides tutorial and reference information for devising user
application programs. The manual is written for the bpnefit of both engineers and programmers for SC/MP pro
gramming indoctrination. Information pertaining to the SC/MP microprocessor and microcomputer equipment
is not provided in this manual.

The material in this manual is for information purposes only and is subject to change without notice.

It is suggested that the reader thoroughly review the tables of contents, illustrations, and tables to familiarize
himself with an overview of the organization of the manual before reading the contents. By so doing, . the reader
may then be prepared to appreciate the extent-of-coverage; such an appreciation shall likely be useful during the
initial reading of this manual.

Copies of this publication and other National Semiconductor publications may be obtained from the sales offices
listed on the back cover.

ii

Chapter

1

2

3

4

TABLE OF CONTENTS

GENERAL IN FORMA TION .
1.1
1.2
1.3

INTRODU CTION
SCOPE OF MANUAL
ORGANIZATION OF MANUAL

BASIC CONCEPTS •
2.1 INTRODUCTION
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7

COMPUTERS, MICROCOMPUTERS, MICROPROCESSORS
BASIC ELEMENTS OF A COMPUTER SYSTEM
Hardware
Firmware
Software •
PROGRAMMING LANGUAGES
USING A COMPUTER
Problem Definition.
Program Floweha rt
Writing a Program •
Desk-checking Code
Assembling a Program
Loading •
Debugging

DEVELOPMENT SYSTEM OVERVIEW
3.1 GENERAL
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.6
3.6.1
3.6.2
3.6.3
3.6.4

DEVELOPMENT SYSTEM CONFIGURA TION •
REGISTERS.
Accumulator (AC) •
Status Register (SR)
Extension Register (E) •
Program Counter (PC) •
Pointer Registers (PTR)
MEMORY ADDRESS STRUCTURE
METHODS OF ADDRESSING
PC-Relative Addressing •
Immediate Addressing.
Indexed Addressing
Auto-Indexed Addressing
INPUT/OUTPUT FACILITIES
Address Lines •
Parallel Input/Output
Serial Input/Output.
I/o Status

ASSEMBLY LANGUAGE
4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.4

CHARACTER SET.
ASSEMBLER CODING CONVENTIONS
Label Field •
Operation Field.
Operand Field •

Self-Defining Terms •
Symbolic Terms
Expressions

Comment Field •

iii

Page

1-1
1-1
1-1
1-1

2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-7
2-7

3-1
3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-3
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-9

4-1
4-1
4-1
4-1
4-3
4-3
4-4
4-4
4-6
4-6

Chapter

4 (Cont'd)

5

6

4.2.5
4.2.6

TABLE OF CONTENTS (Continued)

Identification Sequence Field •
Example Statement.

STATEMENTS •
5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.3
5.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9
5.5.10
5.5.11
5.5.12

COMMENT STATEMENTS
INSTRUCTION STATEMENTS
Memory Reference Instructions •
Memory Increment/Decrement Instructions
Immediate Instructions.
Transfer Instructions
Extension Register Instructions
Pointer Register Move Instructions
Shift, Rotate, Serial Input/Output Instructions.
Miscellaneous Instructions
PSEUDO INSTRUCTIONS
ASSIGNMENT STATEMENT
DIRECTIVE STATEMENTS
• TITLE Directive
• END Directive.
• LIST Directive
• SPACE Directive
• PAGE Directive
• BYTE Directive
• DBYTE Directive
· ADDR Directive
· ASCII Directive
· LOCAL Directive
Conditional Assembly Directives
· FORM Directive

PROGRAMMING TECHNIQUES
6.1 INTRODUCTION
6.2 STACK PROGRAMMING
6.2.1 Stack Operations
6.2.2 Repeatable Subroutine Calls
6.3 SUBROUTINES •
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4
6.5
6.5.1
6.5.2
6.6
6.7
6.7.1
6.7.2

Multilevel Subroutines •
Jump Immediate
Conditional Subroutine Jumps.
Multiple Subroutine Return
Transferring Data to Subroutines
LOOP COUNTER
PAGE CONSIDERATIONS.
Instructions at the Page Boundary
Programs Residing Across Page Boundaries
TEXT PROGRAMMING TECHNIQUES
INPUT AND OUTPUT PROGRAMMING TECHNIQUES
Programmed Input/Output.
Interrupt Input/Output •

iv

Page

4-7
4-7

5-1
5-1
5-1
5-5
5-8
5-9
5-12
5-13
5-16
5-17
5-19
5-23
5-23
5-24
5-24
5-25
5-25
5-25
5-26
5-26
5-26
5-27
5-27
5-27
5-28
5-29

6-1
6-1
6-1
6-1
6-3
6-3
6-3
6-4
6-4
6-4
6-5
6-5
6-6
6-6
6-6
6-6
6-8
6-8
6-9

Chapter

6 (Cont'd)

7

A

B

C

D

E

F

G

H

I

J

6.8
6.8.1
6.8.2
6.8.2.1
6.8.2.2
6.8.3
6.8.3.1
6.8.3.2
6.8.3.3

TABLE OF CONTENTS (Continued)

USING THE STATUS REGISTER.
General .
Arithmetic Operations •

Arithmetic with Unsigned Data Bytes
Arithmetic with Signed Data Bytes •

Overflow and Carry/Link •
Add Operation with CY/L initially reset to 0
Decimal Add Operation with CY/L initially reset to 0
Complement and Add Operation with CY/L initially set to 1

(FORTRAN) CROSS ASSEMBLER PROGRAM
7.1 INTRODUCTION
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3

INPUT AND OUTPU T •
Source File (Input) .
Program Listing File (Output)
Load Module (Output) .
Format of LM File •
OBTAINING AN OBJECT CARD DECK

APPENDIX - ANSI CHARACTER SET •

APPENDIX - OPCODE INDEX OF INSTRUCTIONS

APPENDIX - MNEMONIC INDEX OF INSTRUCTIONS

APPENDIX - INSTRUCTION FORMATS.

APPENDIX - INSTRUCTION EXECUTION TIMES

APPENDIX - DffiECTIVE STATEMENTS - INDEX

APPENDIX - PROGRAMMERS CHECKLIST

APPENDIX - PROGRAM DIAGNOSTIC MESSAGES

APPENDIX - (FORTRAN) CROSS ASSEMBLER (SAS)
G. E. TIMESHARING OPERATING PROCEDURE .

APPENDIX - (IMP-16) CROSS ASSEMBLER OPERATING PROCEDURE

v

Page

6-11
6-11
6-12
6-13
6-14
6-14
6-15
6-15
6-15

7-1
7-1
7-1
7-1
7-2
7-2
7-2
7-5

A-1

B-1

C-1

D-1

E-1

F-1

G-1

H-1

1-1

J-1

Figure

2-1
2-2
2-3
3-1
3-2
3-3
3-4
4-1
4-2
6-1
6-2
7-1
7-2
7-3
7-4
H-1
1-1
J-1

Table

3-1
3-2
4-1
5-1
5-2
5-3
5-4
6-1
A-1
A-2
J-1

LIST OF ILLUSTRATIONS

Major Components of a Microcomputer
Flowchart for Simple Sort Routine
Typical Programming Process
SC/MP Registers
Memory Organization •
Interface to Peripheral Device Controller
I/o Status
Sample Coding Form
Relationship of Terms
Programmed Input/Output.
Interrupt Input/Output Initiation
LM File and General Formats
Title Record Format
Data Record Format
End Record Format
(IMP-16) Cross Assembler Error Detection, Listing Output
Preparing User's SAS$$$ Programs (General Electric Timesharing System) •
Sample Listing of Assembler .

LIST OF TABLES

Operational Features
AddreSSing Formats
Arithmetic and Logical Operators
Symbols and Notation
SC IMP Instruction Summary .
Memory Reference Formats
Summary of Assembler Directives
Status Register Bits
ANSI Character Set in Hexadecimal Representation
Legend for Nonprintable Characters .
Operator Selectable Options

vi

Page

2-2
2-6
2-7
3-2
3-4
3-9
3-9
4-2
4-3
6-8
6-10
7-3
7-4
7-4
7-5
H-1
1-4
J-7

Page

3-1
3-6
4-6
5-2
5-3
5-5
5-24
6-11
A-1
A-2
J-4

Chapter 1

GENERAL INFORMA TlON

1. 1 INTRODUCTION

SC /MP represents a significant breakthrough in low-cost computer systems. Providing many of the features of
higher-priced systems, SC /MP has sufficient hardware to serve most controller and switching applications
where processing speed is not a critical factor. With read/write memory, read-only memory, power supply,
chassis, and console, SC /MP becomes a stand-alone microcomputer.

SC/MP is a programmable a-bit parallel processor implemented on a single chip. One a-bit accumulator, four
I6-bit pointer registers (one dedicated as the Program Counter), an a-bit status register, and an a-bit extension
register are provided. SC/MP can address 65,536 bytes of memory directly.

Architecturally, SC/MP uses a unified bus, whereby the CPU, memory, and peripheral devices are connected
to a common data bus. This configuration enables memory-reference instructions also to reference peripheral
devices.

The SC/MP assembly language is supported by two cross assemblers: (1) a (FORTRAN) Cross Assembler
written in ANSI FORTRAN Nand (2) a (IMP-I6) Cross Assembler written in the IMP-I6 Assembly Language.
Thus, SC/MP assembly language program listings and object modules may be generated on any computer with
an ANSI FORTRAN N compiler and sufficient memory or on an IMP-I6 microprocessor.

1.2 SCOPE OF MANUAL

This manual describes assembly language programming for SC/MP. It contains tutorial and reference informa
tion needed for writing application programs.

The manual is structured so the user not familiar with computers can learn to generate code with a minimum of
effort, and the e""perienced user is not hindered by the basic information included for the beginning user.

1.3 ORGANIZA TION OF MANUAL

The following is a brief description of the contents of chapter 2 through 7.

Chapter 2, Basic Concepts, is a short introduction to microprocessors, assembly language programming, and
the steps used to write and assemble a program.

Chapter 3, System Overview, describes the registers available to the user, the types of addressing used in
SC/MP, and the input/output facilities of SC/MP.

Chapter 4, Assembly Language, describes the elements, the structure, and the coding conventions of the SC/MP
assembly language.

Chapter 5, Statements, is a detailed description of the five statement types processed by SC/MP; the comment,
the instruction, the pseudo-instruction, the assignment, and the directive.

Chapter 6, Programming Techniques, shows programming examples; how to write efficient code, how to address
subroutines, and how to perform input/output (programmed and interrupt).

Chapter 7, (FORTRAN) Cross Assembler, is a description of the SC/MP Assembler Program and the formats
of its input and output files.

1-1

Chapter 2

BASIC CONCEPTS

2.1 INTRODUCTION

This chapter discusses basic programming concepts so the user with little or no programming experience may
be able to produce efficient assembly language code. The topics include components of a computer system and
their functions, the architecture of a computer system, and a step-by-step approach to programming a computer.
The user familiar with these basic topics may skip this chapter.

2.2 COMPUTERS, MICROCOMPUTERS, MICROPROCESSORS

The discussion of computers in this manual is limited to digital electronic comIXIters. Keeping that in mind, our
definition of a computer is an electronic device capable of executing a sequence of instructions stored in binary
format.

Computers come in various sizes from very large to very small. The very large to medium size computers
tend to be general-purpose machines, while the small (minicomputers) to very small (microcomputers) tend to
be special-purpose machines. The smaller computers are often used as dedicated controllers. Microcomputers
in particular serve this function well since they are small, sometimes contained on a single printed-circuit
board, their power requirements are low, and they are the lowest-priced computers currently available.

The primary component of a microcomputer is the CPU (Central Processing Unit), normally referred to as the
microprocessor. A microprocessor is a general term referring to any Large-Scale-Integration (LSI) function
with processing power resembling that of a CPU. Microprocessor loosely covers various types of processors
using large-scale integrated circuits; in other words, the prefix ''micro'' describes the scale of the circuit and
not necessarily a microprogrammed architecture.

Because of the increasing concentration of processing power in LSI devices, microprocessors are being used in
applications that until now have been the exclusive domain of minicomputers.

2.3 BASIC ELEMENTS OF A COMPUTER SYSTEM

Any comIXIter system may be divided into two or three basic areas: hardware, software, and in some newer
systems, firmware.

2.3.1 Hardware

Hardware refers to the physical equipment; the mechanical, magnetic, electrical, and electronic components of
a computer. The major components of a microcomputer are shown in figure 2-1, and discussed in the paragraphs
following.

The most important component of any computer is the CPU, the part that does the processing. 'The main ele
ments of the CPU are the Control Unit and the Register, Aritlunetic, and Logic Unit. The control unit fetches
the instructions stored in memory, decodes, interprets, and implements them. It manages the temporary
storage and retrieval of data, and regulates the exchange of information with the outside world through the input
and output ports. Finally, it coordinates all the units in a timed logical sequence.

The Register, Arithmetic, and Logic Unit does the actual operations of the CPU under the direction of the
control unit.

2-1

r-

REGISTER, MEMORY
ARITHMETIC, - AND
AND LOGIC UNIT PERIPHERALS

CONTROL
UNIT

I

I

_ :'P~ C:R ~U':~~~C::S~O~ ~
Figure 2-1. Major Components of a Microcomputer

Peripherals may be any inJXlt/output or storage device attached to the CPU by an address and data bus. Some
examples of peripherals are Teletypes, card readers, line printers, CRTs, magnetic or paper tape units, disc
units, and read-only or read/write memory.

2.3.2 Firmware

Firmware is a relatively new feature in computer systems rut in microcomJXlter systems is rapidly becoming a
standard feature. Firmware is a term that loosely covers programs resident in read~nly memory (ROM) or
Programmable Read-Only Memory (PROM). ROMs or PROMs generally contain programs that are a funda
mental part of the microcomputer system and are not likely to change, such as loaders or a debug package.

2.3.3 Software

Software, in contrast to firmware, generally refers to those programs that reside in read/write memory (RAM).
These programs are often maintained off-line on punched cards or paper tape, or on some kind of magnetic media
such as tape or disc.

For a general-purpose computer system to perform a particular task, the software required to execute the task
is loaded into the computer read/write memory (RAM). After the first task is completed, another set of pro
grams may be loaded to perform another task. Thus, the software easily modifies the operation and use of the
system.

Any software function may be implemented by firmware for a particular. comp.lter. In the remainder of this
manual, no differentiation will be made between software and firmware.

The following is a list of typical software packages:

• DEBUG PROGRAMS - Debug programs aid the programmer in finding ani correcting errors in
his programs as they are running on the computer.

• DIAGNOSTIC PROGRAMS - These programs check'the various hardware components of a system
for proper operation.

2-2

• LOADERS - The various software packages and applications (user written) programs must be
placed in the proper locations of the system memory. The programs that perform this task are
called loaders.

• EDITOR - Editors are programs that aid in preparing source programs by allowing easy mani
pulation or editing of text material.

• INPUT/OUTPUT HANDLERS - Input/output handlers, sometimes called device drivers, are
subroutines that service specific peripheral devices such as teletypewriters or card readers.

In many systems, the standard input/output handlers are contained in firmware rather than
software.

• SIMULA TORS - Simulators are programs that simulate the operations of one computer on another
computer. Simulators are especially useful if the actual computer is not available (or hasn't been
built). If hardware is available, the use of a simulator may be an unnecessary extra step if the
software must still be debugged on the hardware. The cost of the computer time to run the simu
lator effectively is often more than the cost of a development system.

2.4 PROGRAMMING LANGUAGES

Programming is communicating with the computer by a written language. In written English, there are rules
about starting and ending sentences and paragraphs, spelling words, and so forth. A programming language has
rules of spelling and punctuation also, but these rules are more strictly enforced. If you misspell a few words
or incorrectly punctuate in written English probably you will still be understood. A computer will not produce
the desired result if its language rules are broken.

There are a number of levels of programming languages. The most basic is machine language.

Each instruction of machine language is uniquely defined by a binary code of ones and zeros. The CPU examines
each instruction code and performs the sequence of events to produce the operation defined by that instruction.
For example, assume a 00000001 code tells the computer to exchange the contents of the accumulator and the
extension register. When programming in machine language, the programmer must enter 00000001 to perform
this instruction. This can be slow and awkward,. and errors may be difficult to trace and correct. However,
the use of machine language may be a reasonable way to program when the application is simple and must be
accomplished on a low budget.

Assemblers were developed to make programming easier. An assembler is a computer program that accepts
symbolic codes or "mnemonics" and translates them into binary machine code the computer can execute. Com
pared to machine codes, the mnemonics used for each instruction are much easier to remember and use, and
they make a listing of the program much easier to read. For example, the mnemonic for the 0000 0001 code
mentioned above might be XAE, for Exchange Accumulator and Extension Register.

The use of symbolic codes in place of the ones and zeros of machine language is not the only improvement that
assemblers can provide. An assembler keeps track of the location of each instruction. This is important be
cause it allows the programmer to use symbolic labels for important locations in the program. These labels
allow references to be made to locations in a program withoot requiring the programmer to keep track of the
exact memory locations (which might change if the program is modified).

In addition to allowing the use of mnemonics and labels, assembler listings include comments to document the
program, macros that assign a mnemonic to groups of code, listings of labels and their locations, and flagging
of errors.

At this point we must stop and define source programs and object programs and how they differ. A source pro
gram is a program written by the programmer in any symbolic language. The object program is the list of
binary machine instructions (and data) that can be loaded into the computer for execution. The object program is
produced from the soorce program by the assembler.

2-3

2.5 USING A COMPUTER

To solve a problem using a comInter. the following sequence of operations may be followed from problem defini
tion to loading the final object program.

• Problem Definition

• Program Flowchart

• Writing a Program

• Desk-checking Code

• Assembling a Program

• Loading

• Debugging

2.5.1 Problem Definition

The initial step in programming a comInter for a particular application is problem definition. Problem defini
tion requires specification of the following items.

• Outputs required from the program or programs.

• InInts required for generating the outputs.

• Determination of how the outputs are generated from the inputs (the system transfer function).

• Determination of the acceptable response time (time required for system to react to particular
inputs).

• Actions taken as a result of erroneous inInts. alarm conditions. or other interferences.

For a computer program to be well defined. the course of action to be taken must be specified for any possible
combination of inInts.

An example problem might be the design of a subrrutine that sorts a table of single-byte constants into ascending
order in computer memory. The inputs to the subroutine are the addresses of the first and last bytes of the
table. The output of the subroutine is the table itself. sorted in ascending order. There are no error conditions
or alarm conditions that must be considered. However. sorting generally requires a rather significant amount of
CPU execution time. so a method of determining when the table is completely sorted should be included in the
sort subroutine so the sort may be terminated.

2.5.2 Program Flowchart

Step two consists of actually designing the program. An important tool used in program design is the program
flowchart. The advantages of using a flowchart during program design are as follows:

• A flowchart shows the multidimensional aspects of program flow.

• Excessive branching within a program is shown by a flowchart.

• Function duplications within a program are more easily noticed.

• Program maintenance is made easier by the use of a flowchart.

Standard symbols for drawing program flowcharts have been specified by the American National Standards
Institute (ANSI).

2-4

As an example, a program flowchart for the sort subroutine is shown in figure 2-2. The method used to sort
the table compares two bytes at a time and interchanges the bytes if they are not in ascending order. Bytes one
and two are compared, then byte two and three, and so on until the table is exhausted. In order to sort the
table properly, multiple passes are required. On any particular pass, a flag is maintained to indicate whether
or not an exchange was made. When no exchange occurred on the last pass, the table is completely sorted and
the operation can be te rminated.

2.5.3 Writing a Program

After a program is defined and flowcharted, it must be coded into assembly language and transferred to a media
that is computer readable. Examples of such media are cards and paper tape. The actual program writing pro
cedure involves writing the assembly language on a coding sheet and, then, transferring the program to the
selected media.

In wri ting a program for a microcomputer, two areas of concern arise: memory management and register
usage. Memory management relates to the organization of a program in main memory, and register usage re
lates to the dynamic allocation of hardware registers to various functions within the program.

The following suggestions are offered to aid the user in the process of coding his assembler language program.

2.5.4

• Follow the coding format suggested on the coding form. This results in a program that is easy to
read and, therefore, easier to check out and to maintain.

• Neatness in coding results in fewer errors during transcription of the program to computer
readable media.

• As the program is being written, include comments describing the function of each major section,
calling sequences for all subroutines, assumptions made, obscure coding techniques employed, and
any other information useful for usage or maintenance.

• Subroutines contained in the program should be grooped at the end of the listing for ease of
reference.

Desk-checking Code

After a program is written, Significant amounts of assembly and checkoot time may be saved if the program is
desk-checked. Desk-checking a program consists of rereading a program to check it for accuracy. It might
even extend to emulating manually computer execution of a portion of the program with pencil and paper.

A list of important points to consider during the desk-checking of a program is given in appendix G, Programmers
Checklist.

2.5.5 Assembling a Program

The conversion of a source (assembler language) program into a form that can be loaded into the computer is
performed during the assembly process by the assembler.

Two outputs are generated as a result of running a source program throogh the assembler program: (1) an
object program consisting of loadable machine instructions corresponding to the source program statements,
and (2) a program listing showing soorce statements side-by-side with the object code instructions created from
the statements. Most programmers work with the program listing once it is available.

As a source program is assembled, it is analyzed for errors in the use of the assembler language. Any detected
errors are indicated on the program listing to assist the programmer in debugging.

2-5

START

SAVE CONTENTS
OF REQumED
REGISTERS

GET ADDRESS
OF SUBROUTINE
PARAMETER
LIST

INITIALIZE
SORT-COMPLETE
FLAG TO ZERO

INITIALIZE
SORT-LOOP
LIMITS

COMPARE FmST
(NEXT) TWO
VALUES

NO
(SORT COMPLETE)

RESTORE
REGISTERS

RETURN

NO

NO

SWAP TWO
VALUES, SET
FLAG NON-ZERO

SET FLAG
YES TO ZERO,

INITIALIZE
FOR NEXT PASS

Figure 2-2. Flowchart for Simple Sort Routine

2-6

The flowchart in figure 2-3 shows the relationship of the assembler program to the programming process.

Coding
Sheets Keypunch

Source
Program*

Processor

Object
Program*

* Cards, paper tape, or magnetic tape

Figure 2-3. Typical Programming Process

Some assembler programs, called one-pass assemblers, completely process the symbolic code during one
pass. other assemblers make two passes through the source code. On the first pass, the assembler program
determines the number of words of storage required for each statemen.t and assigns a value for the first loca
tion in every statement line. It generates the machine language program and assembly listing during pass two.

2.5.6 Loading

The object load module produced by the assembler is leaded into the computer from cards or paper tape, using
an absolute or a relocating loader. The absolute loader is used for load modules that have been specified at
assembly time to be loaded into specific memory locations. The relocating loader is used for load modules that
may be loaded into memory locations specified at load time. For example, the starting address of an absolute
load module may be X'lOO; the program must be loaded starting at that address and no other. The relocatable
load mowle cruld be loaded at X'IOO or X'200, or any location the programmer cared to use.

2.5.7 Debugging

Errors flagged by the assembler, or errors discovered while running the program may be corrected with a
debug package. A debug package normally consists of a trace rrutine for evaluating code (instruction-by
instruction), a routine for dumping portions of memory, an editor for correcting errors in the source code,
and a patch routine to temporarily correct the object code.

2-7

Chapter 3

DEVELOPMENT SYSTEM OVERVIEW

3.1 GENERAL

This chapter describes the main features of the SC/MP microprocessor system. Only those features the pro
grammer is primarily concerned with are discussed. Detailed information on the system development hard
ware is contained in the appropriate users manual. Detailed information on the SC/MP device is contained in
the SC/MP Data Sheet.

3.2 DEVELOPMENT SYSTEM CONFIGURATION

The SC/MP is an 8-bit parallel processor with I6-bit memory and peripheral device addressing. Functionally,
SC/MP has a bidirectional data bus connecting the CPU, memory, and peripheral devices. Peripheral devices
are assigned memory addresses, and any standard memory reference instruction can be used for input/output
operations. Memory is expandable to 65,536 bytes. Table 3-1 lists the operational features of SC/MP.

Data Length

Instruction Set

Arithmetic

Memory

Registers

Addressing Modes

Input/Output and Control

3.3 REGISTERS

Table 3-1. Operational Features

8 Bits (Byte)

46 Instructions

Parallel, binary, fixed point, twos complement
2-digit BCD addition

Up to 65,536 bytes

One 8-bit Accumulator
One 8-bit Status Register
One 8-bit Extension Register
Four 16-bit Pointer Registers (one is the Program Counter)

Program Counter Relative
Indexed
Auto-indexed
Immediate

16-bit Address Bus
8-bit Bidirectional Data Bus

The seven registers available to the SCI MP assembly language programmer are shown in figure 3-1 and are
discussed in the following paragraphs.

3-1

8 7 o

Figure 3-1. SC/MP Registers

3.3.1 Accumulator (AC)

Accumulator (AC)

Status Register (SR)

Extension Register (E)

Program Counter (PC)
(Pointer Register 0) (PO)

Pointer Register 1 (PI)

Pointer Register 2 (P2)

Pointer Register 3 (P3)

The 8-bit Accumulator (AC) Is the primary working register of SC/MP. The accumulator is used in performing
arithmetic and logic operations and for storing the results of those operations. Data transfers, shifts, and ro
tates also use the accumulator. In all, 37 of the 46 sc/MP instructions use the accumulator.

3.3.2 Status Register (SR)

7 6 5 4 3 2 1 0 Bit Positions

CY/L OV SB SA IE F2 Fl FO Flags

The Status Register (SR) provides storage for arithmetic, control, and software status flags. The function of
each bit in the register is shown below.

Bit Description

o User Flag 0 (FO). User assigned for control function or for software status. The output
of this bit is available at a pin of the sci MP device.

1 User Flag 1 (Fl). Same as FO.

2 User Fiag 2 (F2). Same as FO.

3 Interrupt Enable Flag aE). The processor recognizes the interrupt input if this flag is set.

4 Sense Bit A (SA). This bit is tied to a package pin and may be used to sense external
conditions. This bit is "read-only"; thus, the Copy Accumulator to Status Register (CAS)
instruction does not affect this bit. When Interrupt Enable is set, Sense Bit A serves as
the interrupt input.

3-2

3.3.3

Bit Description

5 Sense Bit B (SB). Same as SA, except it is not used as an interrupt input.

6 Overflow (OV). This bit is set if an arithmetic overflow occurs during an add (ADD, Am,
or ADE) or a complement-and-add instruction (CAD, CAl, or CAE). Overflow is not
affected by the decimal-add instructions (DAD, DAI, or DAE).

7 Carry/Link (CY/L). This bit is set if a carry from the most significant bit occurs during
an add, a complement-and-add, or decimal-add instruction. The bit is also included in the
Shift Right with Link (SRL) and the Rotate Right with Link (RRL) instructions. CY/L is
input as a carry into the bit 0 position of the add, complement-and-add, and decimal-add
instructions.

Extension Register (E)

The 8-bit Extension Register (E) is used primarily with the accumulator to perform arithmetic, logic, and data
transfer operations. If the displacement in an indexed or an auto-indexed memory reference instruction equals
-12810 (X'80), then the contents of E are substituted for the displacement for the given instruction.

Another function of the Extension Register is serial input/output. This feature is explained in detail in the descrip
tion of the Serial Input/Output Instruction (SIO) in Chapter 5.

3.3.4 Program Counter (PC)

The Program Counter (PC) is the dedicated 16-bit Pointer Register po. The Program Counter contains the ad
dress of the instruction being executed. In the event of an interrupt or a subroutine call, the contents of the
Program Counter may be stored on a software stack and retrieved when the processor returns to the main pro
gram. The use of a software stack is explained in chapter 6.

The Program Counter is incremented just prior to an instruction fetch. Therefore, the effective address of any
transfer of control should be one less than the actual address to be executed (taking into account the modulo 212
address arithmetic as explained in section 3.4).

Arithmetic affecting the Program Counter is performed on the low-order twelve bits; the high-order four bits
are unaffected. A further explanation of this may be found in section 3.4.

3.3.5 Pointer Registers (PTR)

There are three 16-bit Pointer Registers (PTR) available for memory and peripheral device addressing, and
for use as page pointers, stack pointers, or index registers. Typically the programmer assigns a specific
function to each register. The following aSSignments are used typically in the SC/MP development system
software.

PI - ROM Pointer

P2 - Stack Pointer

P3 - Subroutine Pointer

As mentioned previously, po is assigned the function of program counter by the design of the hardware.

3.4 MEMORY ADDRESS STRUCTURE

Memory is organized as a sequence of 8-bit bytes. Each byte is identified by a 16-bit address that represents
its sequential position in memory from 0 to X'FFFF (65,53510).

3-3

In the internal architecture of the computer, memory is divided into 16 pages of 4,096 bytes each, as shown in
figure 3-2. Each address consists of a 4-bit page address and a l2-bit page displacement.

64K

I
4K PAGE 0

4K PAGE 1

l

4K PAGE 14 (X'E)

16-BIT MEMORY ADDRESS

'115 12 11 -- O~
I Page Displacement

'--' '--....-----'

/
~

000 0

OFF F
1 0 0 0

1 F F F

E 0 0 0

>1-_______ ---1 E F F F
F 0 0 0

4K PAGE 15 (X'F)

~'--------...J F F F F

Figure 3-2. Memory Organization

3-4

When performing arithmetic to calculate the effective address of an operand, the calculations are performed on
the low-order (displacement) portion of the address with no carry into the high-order (page) portion. For example:

Address Displacement Address Displacement
Remains Within Page Exceeds Page Size

Address Displacement Address Displacement
of Page Within Page of Page Within Page

Current
0 FB4 0 FB4

Address

Displacement
From 05 4D
Instruction ,

New
0 FB9 0 001 Address

As shown in the previous example, when the address displacement remains within the current page, no carry
is generated because the sum of the displacements did not produce a carry. In the example where the displace
ment exceeds the page size, a carry is normally generated when the two numbers are summed, but it is not
carried into the page address field.

When incrementing the address to fetch the next instruction, the same page/displacement arithmetic occurs.

If a two-byte instruction is inadvertently separated by a page boundary, an error occurs. Consider the following
sequence of instructions on pages 0, 1, and 2 - with the first digit of the address designating the page and the
next three digits, the location within the page.

Address

Page 0 { .

OF~F

Page 1

Page 2

1000
1001

IFFE
IFFF

{ 2000

Instruction

FF

81
AO

DO
CO

A2

Page Boundary

Page Boundary

The instruction intended, when the PC = IFFF (last word in page 1), is X'COA2 (LD 20A2). However, instead
of fetching the latter half of the instruction from page 2, a wrap-around is made to the first word of page 1; the
instruction that will be executed is X'C081 (LD 1081). The SC /MP assembler assumes the user will organize
his programs in pages of 4,096 words each to provide protection from the situation described above. If a bound
ary violation occurs, the assembler issues an alarm message.

3-5

3.5 METHODS OF ADDRESSING

During execution, instructions and data defined in a program are stored into and loaded from specific memory
locations, the accumulator, or selected registers. Because the CPU, memory (read/write and read-only), and
peripherals are on a common data bus, any instruction used to address memory may also be used to address the
per_~pherals. The formats of the instruction groops that reference memory are shown below.

Memory Reference Instructions

Memory Increment/Decrement
Instructions and Transfer Instructions

7 , , , ,

opcode

opcode

2 1,0 7 , , 0

m ptr disp

ptr disp

Memory-reference instructions use the PC-relative, indexed, or auto-indexed methods of addressing memory.
The memory increment/decrement instructions and the transfer instructions use the PC-relative or indexed
methods of addressing.

The various methods of addressing memory and peripherals are shown in table 3-2.

Immediate addressing is an addressing mode specific to the immediate instruction group.

Table 3-2. Addressing Modes

Type of
Operand Formats

Addressing
m ptr disp

PC-relative 0 0 -128 to +127

Indexed 0 1, 2, or 3 -128 to +127

Immediate 1 0 -128 to +127

Auto-indexed 1 1, 2, or 3 -128 to +127

For PC-relative, indexed, and auto-indexed memory-reference instructions, another feature of the addressing
architecture is that the contents of the extension register are substituted for the displacement if the instruction
displacement equals -128 (X'80).

3.5.1 PC-Relative Addressing

A PC-relative address is formed by adding the displacement value specified in the operand field of the instruction
to the current contents of the program counter. The displacement is an 8-bit twos-complement number, so the
range of the PC-relative addressing format is -12810 to +12710 bytes from the current location of the Program
Counter. During execution of an instruction, the program counter contains the address of the last byte of the
instruction. The following examples show the use of PC-relative addressing.

3-6

Location
Counter

0005

OOOE

0014

Generated
Code

COOE

90F5

04

LOOP:

TEMP:

LD TEMP ;LOAD THE VALUE IN TEMPORARY STORAGE

JMP LOOP ;REPEAT

• BYTE X'04

The assembler assumes PC-relative addressing in the memory-reference and transfer instructions when no
pointer-register operand is specified.

3.5.2 Immediate Addressing

hnmediate addressing uses the value in the second byte of a double-byte instruction as the operand for the opera
tion to be performed (see below).

1
7, ,01 L7, ~,O~

data ThIS byte IS used as the
opcode

L-__________ --I instruction operand.

byte 1 byte 2

For example, compare a Load (LD) instruction to a Load Immediate (LDI) Instruction. The Load Instruction uses
the contents of the second byte of the instruction in comIAlting the effective address of the data to be loaded. The
Load hnmediate Instruction uses the contents of the second byte as the data to be loaded. Because the operand
occurs as the second byte of a two-byte instruction, page boundary conditions should be observed as mentioned
in 3.4.

3.5.3 Indexed Addressing

Indexed addressing enables the programmer to address any location in memory through the use of the pointer
register and the displacement. When indexed addressing is specified in an instruction, the contents of the
designated pointer register are added to the displacement to form the effective address. The contents of the
pointer register are not modified by indexed addressing. Indexed addressing is used to access tables or sub
routines, to transfer control to another page, or to transfer control to a section of the current page that is
outside the range of the PC-relative transfer. The rules for page boundaries still apply, so the user is cau
tioned about crossing page boundaries when using indexed addressing to access tables. Such a reference results
in a wrap-around from the end to the beginning of the page, or vice-versa (see 3.4).

3.5.4 Auto-Indexed Addressing

Auto-indexed addressing provides the same capabilities as indexed addressing along with the ability to increment
or decrement the designated pointer register by the value of the displacement.

If the displacement is less than zero the pointer register is decremented by the displacement before the contents
of the effective address are fetched or stored. If the displacement is equal to or greater than zero, the pointer
register is used as the effective address, and the pOinter register is incremented by the displacement after the
contents of the effective address are fetched or stored.

3-7

NOTE

The contents of the pointer register are modHied by
auto-indexed addressing.

An at sign '@' before the displacement operand designates an auto-indexed operation. Example:

Generated
Code

C601 LD @1(P2)

3.6 INPUT/OUTPUT FACILITIES

;GET A BYTE FROM THE TABLE, AUTO-INDEX

SC/MP uses a single bidirectionlil inp,lt/ouqut bus to interconnect the CPU, memory, and peripheral devices.
Peripheral devices are assigned memory addresses, so standard memory-reference instructions can be used
for inp,lt/output operations.

Peripherlil device addreSSing, data exchange, status reporting, and control signal operations are performed by
an external device controller. Because of variations in peripheral devices, depending on the function performed,
a standard input/ouqut operation cannot be described here. Similarly, the device controller operations vary
widely, depending on the peripheral device being serviced. SC/MP provides the following facilities, which may
be used in various applications, providing they match the device controller in use. Refer to figure 3-3.

• 16-bit Address

• 8-bit Parallel Inp,lt/Output

• I-bit Serial Inp,lt/Output

• 3 Flag Outp.lts

• 2 Sense Inputs

3.6.1 Address Lines

The 12-bit address lines contain the displacement portion of the effective memory address generated in response
to a memory-reference instruction. The 4-bit page portion of the effective memory address is output on the
data bus (see 3.6.4). Because peripheral devices are assigned memory addresses, a decoder in the associated
device controller looks for its address or addresses. (Multiple addresses may be assigned to multifunction
devices.) Details of interfacing hardware to SC/MP are found in the SC/MP Data Sheet and the SC/MP Users
Manual.

3.6.2 Parallel Input/Output

An 8-bit bidirectional data bus transfers data between the peripheral device controller and the processor. This
data is associated with the memory reference instruction that addressed the peripheral device. It is the function
of the peripheral device controller to place the data on the line when the device is addressed for input; and to
transfer data from the lines when the device is addressed for ou1plt. The direction of the data transfer depends
on the nature of the memory-reference instruction.

3.6.3 Serial Input/Outp.lt

Serial Inp,lt/Outp.lt is provided by using one of the eight data lines, or dedicated flag and sense input, or the
extension register as a serial inplt/output shift register.

3-8

12 ADDRESS LINES

)

8 DATA LINES

SC/MP I() PERIPHERAL
CONTROLLER

READ/WRITE TIMING

I()
AND CONTROL

Figure 3-3. Interface to Peripheral Device Controller

In systems that have only one serial input/output device, the serial input and output pins may be tied directly to
the inIXIt/output device and no address decoding is necessary. The Serial Input/Output Instruction (SIO) is then
used for serial inIXIt/output. Timing may be provided by program loops using the delay instruction or by an
external timing element that is tested by the jump condition inIXIts. For asynchronous systems a flag may be
IXIlsed each time a new bit is shifted in/out, and a sense condition tested to detect bit received/ready.

Systems that have several serial input/output devices, must be multiplexed, and device selection may be pro
vided by the control flags, or by use of the parallel input/output commands to load an external latch.

The serial data i.nplt and output pins may be used as sense input and flag outIlit lines in systems that do not
require the serial inIXIt/output function.

3.6.4 I/o Status

The I/O status (figure 3-4) is output on the data bus, along with the appropriate timing information on the
timing lines, so that the peripheral controller has the additional information available if it is required by a
particular system. Two of the I/O status bits are for hardware functions (R-flag and I-flag); the remaining
six I/O status bits are generated under software control.

A15 to A12
H
D
I
R

7

H

Four most significant (page) address bits
H-flag generated by HALT instruction
D-flag generated by DL Y instruction

o

12

I-flag generated by hardware for instruction fetch cycle
R-flag generated by hardware for read I/O cycle

Figure 3-4. I/O Status

3-9

Chapter 4

ASSEMBLY LANGUAGE

SC/MP assembly language statements have well-defined formats constructed from the elements described in
this chapter.

4.1 CHARACTER SET

Statements are written using the following letters, numbers, and special characters:

Letters:

Numbers:

Special Characters:

A through Z

o through 9

!$%&'()*+,-./

Note: 15 means blank

@15

Any of the printable characters listed in appendix A, "ANSI Character Set in Hexadecimal Representation, " may
be specified with the ASCII Directive Statement. other nonprintable characters (those consisting of multiple
letters) may be generated by using one or more hexadecimal constants in a • BYTE Directive Statement. Direc
tive statements are described in chapter 5.

4.2 ASSEMBLER CODING CONVENTIONS

Assembly language programs are structured around source statements that contain from one to five fields as
follows: label (optional), operation (mandatory), operand (usually required), comment (optional), and identifica
tion sequence (optional). The fields must be entered in the following order with one or more blanks separating
each field:

Dabel field] operation field operand field [comment field] [identification field]

A sample coding form shown in figure 4-1 has the five fields delineated. However, since the assembler program
accepts free-form statements, the programmer is permitted to disregard field boundaries. Use of field boundaries,
wherever pOSSible, is highly recommended.

The entry in each of the five fields must meet certain specifications and, in many cases, the programmer must
understand how the assembler program executes certain types of instructions in order to code legal statements.
The following paragraphs describe the entry requirements for the five fields.

4.2.1 Label Field

The label field is optional and may contain a ~bol used to identify the curr:ent sta~?l¥!!l.when reference(p~
other statements. More than one label may appear in the label field, in which case any of the labels may be
used to ref~~~·~~-the labeled location. A label may appear by itself in a statement, in which case it refers to
the next instruction or data word in the source program.

4-1

~
I

t\:)

~s CODING FORM

PROGRAM P,c,(;E OF

PROGRAMMER DATE

STATEMENT
LABEL OPERATION OPERAND COMMENTS IDENTIFICATION

1 2 :3 4 5 6 7 e 9 10 " 12 13 14 15 16 17 18 ,9 20 21 22 23 24 25 26 27 28 29 30 :3 1 32 33 34 35 36 37 38 39 40 41 42 4344 45 4647 48 49 50 51 52 53 54 55 56 57 58 59 SO 61 62 63 64 65 6667 68 69 70 71 72 73 74 75 76 77 78 79 80

r---------;---------~----------~--------~--+_--------~

1 2 :3 4 5 6 7 B 191011 121314 15 16117 181920 21 2223242526272829 30 31 32133 34 35 36 37 38 3940 41 42434445464748495051525354555657585960 61626364656667 M 69 70 71 7217374 75 7677787990

Figure 4-1. Sample Coding Form

The following rules apply to labels:

1.

2.

3.

A label may contain from 1 to 32 alphanumeric characters and must ponclude witha colon (:);
for example, TABEND:. 9P.lJ:: the f,iE.~~ .. E!!x. char;w.1e.;r.;;>ll-re used by th~ a~s;mbi~r t~uniquery
identify a label. .

The :gX~t character must be alphabetic or a dollar sign ($).

~!l~~ ca~o~!lppea! within the label.

For nonlocallabels (that is, ones that do not begin with a $), the first six characters must be
~ For local labels, the first five characters including the $ must be unique (see 5.5.9
• LOCAL Directive).

A space is not necessary between labels or following the label field.

4.2.2 Operation Field

The operation field is mandatory and contains a mnemonic operation code (opcode) defining an assembler or a
machine operation.

Operation mnemonics are used in directive and instruction statements. Instruction statements define the machine
operations necessary to perform the desired function. Valid operation mnemonics for instruction statements are
defined in detail in 5.2. Directive statements control the process of program assembly and may generate data.

4.2.3 Operand Field

The operand field contains entries that identify data to be acted upon by the statement. A space is not required
to terminate the field. An operand entry is composed of one or more terms which represent a value. The
value may be inherent in the term, in which case the term is self-defining (4.2.3.1) or the value may be assigned
by the assembler program during assembly, in which case the term is symbolic (4.2.3.2). An arithmetic com
bination of terms is reduced to a single value by the assembler program as described in 4.2.3.3. The relation
ship of terms is shown in figure 4-2. The various types of terms are described in the following paragraphs.

Terms

Self-Defining (literal)

I
Numbers

I

Decimal Digits Hex

X' Digits

I

o Digits

I
Strings

I
I

Alpha Numbers Special
Characters

Figure 4-2. Relationship of Terms

4-3

Symbols

I
I

Labels
I

Nonlabels

4.2.3.1 Self-Defining Tenns

A self-defining tenn has its value inherent in the tenn. The assembler program does not assign a value to the
tenn, but derives the value from the term.

Self-defining tenns are used to specify immediate data, addresses, registers, and inplt/ou1put infonnation to
the assembler program. Three types of self-defining tenns are available: decimal, hexadecimal, and character
(or string).

A decimal self-defining tenn is zero, or a positive decimal integer that does not begin with zero. The allowable
range of decimal rrumbers is 0 through 65,535. Examples: 32761, 10, 5, O.

A hexadecimal self-defining term may be specified in either of two ways. The term may start with X'; or the
tenn may start with a leading zero. The range of hexadecimal rrumbers is 016 to FFFF16• Examples: X'A2,
OA2, X'1234, 01234, 0, X'O, OABCD, X'ABCD.

A character self-defining tenn is defined ac a string. A string is a series of characters or a single character
enclosed in single quote marks (for example, 'TIiIS IS A STRING'). All letters, numbers, and special characters
(including blanks) may be specified in a string. If a single quote mark is part of the character string, it should
immediately be preceded by another single quote mark; for example, 'DON"T DO IT' represents DON'T DO IT.
String characters are translated to ASCII code (see appendix A) in memory with each character occupying 8 bits.
Refer to the • ASCII directive described in 5.5.8.

Self-defining tenn
~

LDI X'AB

A null string (") will cause the assembler to generate a single blank.

4. 2. 3. 2 Symbolic Tenns

Symbols are the most common means of referencing address locations or arbitrary values. Symbols are
defined (assigned values) by one of three methods:

1. By appearing in a label field in a statement (see 4.2.1).

symbol
~
SUB1: LDI o ;CLEARAC

The value assigned to a symbol appearing in the label field is the address of the
instruction, data, or storage location named by the symbol.

2. By using an assignment statement to assign a specific value to a symbol (see 5.4).

symbol
,--...
P2 = 2 ;STACK POINTER

3. By using a • FORM directive statement to assign a value to a symbol (see 5. 5. 12).

• FORM

symbol
,--...
DATA, 2, 2, 4(X'A)

Symbol construction must meet the following restrictions:

1. A symbol may contain one or more alpharrumeric characters, the first of which must be either
a letter or a dollar sign ($).

4-4

2. Although up to 32 characters may be included, only the first ~ix chara<;;Uu:I?_are recognized by the
assembler program. Therefore, the programmer must ensure that a long symbol is unique in
the first six characters.

Example: LONGSY }
LONGSYMBOLI are identical to the assemblers
LONGSYMBOL2

3. \ If the first character in the symbol is a dollar sign ($), the symbol is defined as a local symbol.
1 The • LOCAL operator allows the programmer to specify that local symbols appearing between
• two • LOCAL directive statements have a certain meaning only within that region of the program
l (see 5.5.9 • LOCAL Directive). This enables the programmer to use common mnemonics
, throughout a program without causing a conflict of names.

NOTE

Within a local region, a long local symbol must be
unique in the first five characters, including the
dollar sign ($).

Example: $ABCD }
$ABCDEF are identical symbols to the assembler.

4. No special characters or embedded blanks may appear within a symbol.

r 5. Symbol values cannot exceed a positive value of 65,535 or a negative value of 32,768 for 16-bit
I data; or 255 and 128, respectively, for 8-bit data.

Several examples of symbols follow:

Legal Symbols

$ABC
LONGSYMBOL
$AB2
$2
XYZ
$ABCDEF
$ABC2EF

lllegal Symbols

2AB
#CDE
XYZ$

A program assembled on the (FORTRAN) Cross Assembler may contain 900 symbols. A program assembled
on the (IMP-16) Cross Assembler may contain about 175 symbols if the 4K version is used or 715 symbols if
the 8K version is used.

A symbolic term may represent a memory address and, hence, may have a value ranging between 0 and 65,53510•
Since SC IMP is an 8-bit machine, such a value will require two 8-bit bytes for its containment. In order to
facilitate working with such values, they have been divided by the assembler into two halves, designated the
''high'' and the ''low'' parts of the value. The high part represents the upper half of the value (bits 15-8) and
the low part represents the lower half (bits 7-0). These may be referred to in assembly language by using the
forms, H(SYMBOL) and L(SYMBOL). For example:

Address represented by SYMBOL
H(SYMBOL)
L(SYMBOL)

5861510 = OE4F7
22810 = OE4
24710 = OF7

The forms, H(SYMBOL) and L(SYMBOL), may be used in any context where an 8-bit value would be appropriate.

4-5

In the previous example, note the following:

4.2.3.3 Expressions

OTHER = SYMBOL+ 1
H(OTHER)
L(OTHER)

H(SYMBOL)+1
L(SYMBOL)+1

OE4F8
OE4
OF8
OE5
OF8

Operand entries, consisting of either a single term or an arithmetic or logical combination of terms, are called
expressions. Expressions are either simple or multiterm. Simple expressions are single terms, such as a
symbol or a self-defining term. Multiterm expressions are formed in the same manner as normal arithmetic
expressions and are evaluated by the assembler program in a strict left-to-right order without regard to treat
ing a particular operator before any other. Parentheses are not permitted for the p.trpose of grouping arith
metic and/or logical operations; they have special significance in defining certain assembler functions.

Examples: L(TABLE) + X'10
100 - 1
ENTRYI + ENTRY2 - 4

ExpreSSions are evaluated as 16-bit values.

Table 4-1 lists the arithmetic and logical operators available for forming expressions.

A unary operator operates upon one operand and appears in the format lOp opnd' (for example, -9). A binary
operator operates upon two operands and appears in the format 'opnd1 op opnd2' (for example, A&B).

Table 4-1. Arithmetic and Logical Operators

Operator Function Type

+ Addition Binary

- Subtraction Unary or binary

* Multiplication Binary

/ Division Binary

% Logical NOT Unary

& Logical AND Binary

! Logical OR Binary

4.2.4 Comment Field

Comments are optional descriptive notes printed on the program listing for programmer reference. Comments
should be included throughrut the program to explain subrrutine linkages, assumptions made, formats of inputs
processed, and so forth. A comment may follow a statement, or the comment may be entered on a separate
statement line(s) since the comment has no affect on the assembled program and is printed only on the listing.

4-6

The following conventions apply to comments:

4.2.5

1. A _<l9mmentmust be preoeded by a semioolon (;) •
...•. ---.~----

2. All valid characters, including blanks, may be used in comments.

3. Comments should not extend beyond column 72, but a comment may be carried over on the
following line (preceded by a semicolon).

Identification Sequence Field

The identification sequence field is an optional entry that specifies program identification and/or statement
sequence characters. If the field or a portion of the field is used for program identification, the identification
is pmched in the statement cards and is listed on the program listing. This field is generally not used with
paper tape input.

As an aid to keeping source statements in order, the programmer may code a sequence of characters in ascend
ing order in the identification sequence field.

The identification sequence field is fixed in columns 73 through 80 of the source image. Columns 73 through 80
are ignored by the assembler but are printed in the program listing.

4.2.6 Example Statement

An example assembler statement is as follows:

Label Operation Operand Comment

LOOP: LD 1(P2) ;GET A VALUE

The label, LOOP, is used to refer to the example statement in later (or previous) statements; in effect, to loop
back to the statement. The mnemonic operation code, LD, stipulates the type of operation. The operand field
specifies a pointer, P2, and a displacement, +1, and the comment field contains a note that may be used by the
programmer to identify quickly the action defined by the statement. See chapter 6 for other statement examples.

4-7

Chapter 5

STATEMENTS

The SC /MP assembler accepts five types of statements: comment, instruction, pseudo instruction, assignment,
and directive.

5.1 COMMENT STATEMENTS

Comment statements are defined by a semicolon (;) in the first character position of the record. They do not
generate code, but serve only to document the symbolic ou1p1t listing of the program. For example:

;THIS IS A COMMENT STATEMENT

5.2 INSTRUCTION STATEMENTS

The assembly language instruction set of the SCi MP provides arithmetic, logic, shift, transfer, and other
operations between the accumulator and memory or the other registers.

Instruction statements, when assembled, generate the object (machine) code that defines the operations the
processor will perform. Depending on the instruction type, one or two bytes of object code are generated for
each instruction assembled.

I In the following descriptions, any user accessible register or bit that is not explicitly mentioned will not be
\ altered by the instruction.

There are 46 se/ MP instruction statements that comprise the following eight classes:

• Memory Reference

• Memory Increment/Decrement

• Immediate

• Transfer

• Extension Register

• Pointer Register Move

• Shift, Rotate, and Serial Input/Ultput

• Miscellaneous

Refer to table 5-1 for definitions of the symbols used in the notation for describing the SCI MP instruction set.
Upper-case mnemonics refer to units designated by fields of the instruction words; lower-case mnemonics refer
to the numerical values of the corresponding fields. For example, ptr in an assembler statement denotes the
mtmber of a pointer register, whereas (AC) - (PTR) denotes the contents of the accumulator are replaced by
the contents of a pointer register. In the case where both a lower-case mnemonic and an upper-case mnemonic
are composed of the same letters, only the lower-case mnemonic is given in table 5-1. Lower-case notation
designates a variable.

The se /MP instruction set is summarized in table 5-2.

5-1

Symbol and
Notation

AC

CY/L

data

disp

EA

E

i

IE

m

OV

PC

ptr

ptrn:m

SIN

SOUT

SR

()

[J

@

Table 5-1. Symbols and Notation

Meaning

8-bit Accumulator.

Carry/Link Flag in the status Register.

Signed, 8-bit immediate data field.

Displacement, represents an operand in a nonmemory reference instruction
or an address modifier field in a memory reference instruction. It is a
signed twos-complement number.

Effective Address as specified by the instruction.

Extension Register; provides for temporary storage, variable displacements
and separate serial input/output port.

Unspecified bit of a register.

Interrupt Enable Flag.

Mode bit, used in memory reference instructions. Blank parameter sets
m = 0, @ sets m = 1.

Overflow Flag in the Status Register.

Program Counter (Pointer Register 0); during address formation, PC
points to the last byte of the instruction being executed.

Pointer Register (ptr'" 0 through 3). The register specified in byte 1 of
the instruction.

Pointer register bits; n:m = 7 through 0 or 15 through 8.

Serial Input pin.

Serial Output pin.

8-bit status Register.

Means "contents of~" For example, (EA) is contents of Effective Address.

Means optional field in the assembler instruction format.

Ones complement of value to right of - •

Means "replaces."

Means "is replaced by. "

Means "exchange."

When used in the operand field of the instruction, sets the mode bit (m) to
1 for auto-incrementing/auto-decrementing indexing.

Modulo 10 addition.

AND operation.

Inclusive-OR operation.

Exclusive-OR operation.

Greater than or equal to.

Equals.

Does not equal.

5-2

'" I
Co.:>

Description

Memory Reference Instructions

Load

Store

AND

OR

Exclusive-OR

Decimal Add

Add

Complement and Add

Memory Increment/Decrement Instructions

Inc rement and Load

Decrement and Load

Immediate Instructions

Load Immediate

AND Immediate

OR Immediate

Exclusive OR Immediate

Decimal Add Immediate

Add Immediate

Complement and Add Immediate

Transfer Instructions

.Jump

Jump If Positive

Jump If Zero

Jump If Not Zero

Double-byte Miscellaneous Instructions

Delay

(Continued on next page)

Op
Code

CO

C8

DO

D8

EO

E8

FO

F8

A8

B8

C4

D4

DC

E4

EC

F4

FC

90

94

98

9C

8F

Table 5-2. SC/MP Instruction Summary --- Double-Byte

Source Statement Object Format Operation
Micro-
cycles

Page

7 6 5 4 3 2 1 017 6 5 4 3 2 1 0 1
1

LD 1 100 0 m ptr disp I (AC)-(EA) 18 5-5
ST 1 100 1 (EA)_(AC) 18 5-6
AND

{ disp
11010 (AC)-(AC) /\ (EA) 18 5-6

OR 11011 (AC)-(AC) v (EA) 18 5-6
XOR

disp(ptr)
1 1 100 (AC)_(AC) -V- (EA) 18 5-6

DAD
@disp(ptr)

1 110 1 (AC)_(AC)10 + (EA)10 + (CY/L); (CY/L) 23 5-7
ADD 1 1 1 1 0 (AC)--(AC) + (EA) + (CY/L); (CY/L), (OV) 19 5-7
CAD 1 1 1 1 1 (AC)--(AC) + ~ (EA) + (CY/L); (CY/L), (OV) 20 5-8

7 6 5 4 3 2 1 017 6 5 4 3 2 1 0 1

ILD) (disp 1 0 1 0 1 0 ptr disp 1 (AC) , (EA)-(EA) + 1 22 5-8

DLD disp(ptr) 1 0 1 1 1 0 (AC), (EA)_(EA) - 1 22 5-9

76543210765432101

LDI " 1 1 0 0 0 100 data 1 (AC)_data 10 5-9
ANI 110 1 0 1 0 0 (AC)-(AC) /\ data 10 5-10
ORI 110 1 1 100 (AC)-(AC) v data 10 5-10

XRI data 1 1 100 100 (AC)-(AC) -V- data 10 5-10

DAI 1 110 1 100 (AC)+--(AC)lO + datalO + (CY/L); (CY/L) 15 5-11

ADI 11110 100 (AC)-(AC) + data + (CY/L); (CY/L), (OV) 11 5-11

CAl -' 111 1 1 1 0 0 (AC)_(AC) + ~ data + (CY/L); (CY/L), (OV) 12 5-11

7 6 5 4 3 2 1 017 6 5 4 3 2 1 0 1 ,"P} 100 100 ptr disp 1 (PC)-EA 11 5-12

JP (disp 10010 1 If (AC) " 0, (PC)- -EA 9,11 5-13

JZ disp(ptr) 1 0 0 1 1 0 If (AC) = 0, (PC)_EA 9,11 5-13

JNZ 100 1 1 1 If (AC) I 0, (PC)4 -EA 9,11 5-13

17 6 5 4 3 2 1 017 6 5 4 3 2 1 0 I
DLY disp 1 0 0 0 1 1 1 11 disp 1 count AC to -I, 13 to 5-22

delay = 13 + 2 (AC) + 2 disp + 29 disp 131593
microcycles

-- --

Table 5-2. SC/MP Instruction Summary --- Single-Byte

Description
Op

Source Statement Object Format Operation
Micro-

Page Code cycles

Extension Register Instructions
7...6543210

Load AC from Extension 40 LDE o 1 0 0 0 000 (AC)--(E) 6 5-14
Exchange AC and Extension 01 XAE o 0 0 0 0 001 (AC)-(E) 7 5-14
AND Extension 50 ANE o 1 0 1 0 000 (AC) __ (AC) 1\ (E) 6 5-14
OR Extension 58 ORE 010 1 100 0 (AC) __ (AC) V (E) 6 5-14
Exclusive-OR Extension 60 XRE o 1 100 000 (AC)--(AC) 'V' (E) 6 5-15
Decimal Add Extension 68 DAE o 1 1 0 100 0 (AC)--(AC)10 + (ElIo + (CY/L); (CY/L) 11 5-15
Add Extension 70 ADE o 1 1 1 0 0 0 0 (AC)--(AC) + (E) + (CY/L); (CY/L), (OV) 7 5-15
Complement and Add Extension 78 CAE o 1 1 1 100 0 (AC) __ (AC) + - (E) + (CY/L); (CY/L), (OV) 8 5-16

Pointer Register Move Instructions
765432101

c.n

Exchange Pointer Low 30
XPAL)

o 0 1 100 ptr (AC)-(PI'R7:0) 8 5-16

Exchange Pointer High 34 XPAH ptr o 0 1 101 (AC)_(PTR15:8) 8 5-17
Exchange Pointer with PC 3C XPPC o 0 1 1 1 1 (PC)_(PTR) 7 5-17

J,.
Shift, Rotate, Serial I/o Instructions

76543210

Serial Input/Output 19 SIO o 0 0 1 1 001 (E i)-(E i _1), SIN-(E7), (EO)-SOUT 5 5-17
Shift Right lC SR 000 1 1 100 (AC i)-(AC i_1), 0----1AC 7) 5 5-18
Shift Right with Link 1D SRL 00011101 (AC i)-(AC i_1), (CY/L)-(AC 7) 5 5-18
Rotate Right IE RR 000 1 1 1 1 0 (AC i)-(AC i_1), (ACo)-(AC7) 5 5-18

Rotate Right with Link IF RRL 00011 111 (AC i)-(ACi_1), (ACo)-(CY/L)-(AC7) 5 5-19

Single-byte Miscellaneous Instructions
7 6 5 4 3 2 1 0

Halt 00 HALT o 0 0 0 0 0 0 0 Pulse H-flag 8 5-19

Clear Carry/Link 02 CCL o 0 0 0 0 0 1 0 (CY/L)-O 5 5-20

Set Carry/Link 03 SCL o 0 000 0 1 1 (CY/Lj_l 5 5-20

Disable Interrupt 04 DINT o 0 0 0 0 100 (IE)-O 6 5-21

Enable Interrupt 05 lEN o 0 0 0 0 101 (IE)-1 6 5-20

Copy Status to AC 06 CSA o 0 0 0 0 110 (AC)-(SR) 5 5-21

Copy AC to Status 07 CAS o 0 0 0 0 111 (SR)_(AC) 6 5-21

No Operation 08 NOP o 0 0 0 1 000 (PC)-(PC) + 1 5 5-22

5.2.1 Memory Reference Instructions

This group of eight instructions provides logic, arithmetic, and data transfer operations between the accumula
tor and the effective address. The Memory-Reference Instructions and mnemonics are as follows:

Load.
Store.
AND.
OR ..
Exclusiv~OR

Decimal Add
Add
Complement and Add

. LD

. ST

. AND

.OR

.XOR

. DAD

. ADD

. CAD

The Effective Address (EA) may be PC-relative, indexed, or auto-indexed as shown in table 5-3.

Table 5-3. Memory Reference Formats

Operand Formats

Addressing Object
Source

m ptr disp*

PC-relative 0 0 -128 to +127 disp

Indexed 0 I, 2, or 3 -128 to +127 disp(ptr)

Auto-indexing 1 I, 2, or 3 -128 to +127 @disp(ptr)

* Note: If disp = -128, then (E) is substituted for disp in calculating EA as well
as in performing auto-indexing.

PC-relative addressing is assumed when only a displacement (disp) value is specified (example: LD VALUE).
Indexed addressing requires a displacement and one of the four pointer registers (example: ADD 10(Pl)).
Auto-indexing requires the "at sign," a displacement, and a pointer register (other than PC) (example:
ST @-1(3)).

The formats of the source statement and the object code and the description of the operation of each Memory
Reference Instruction follow.

LOAD (LD)

SOURCE STATEMENT

Operation

LD

Operands

disp
disp(ptr)

@disp(ptr)

Operation: (AC) - (EA)

7 I I I

1 1 0

OBJECT FORMAT

1 3 2 1 10

0 0 m ptr disp

byte 1 byte 2

The contents of the Accumulator (AC) are replaced by the contents of the Effective Address (EA).
The initial contents of AC are lost; the contents of EA are unaltered.

5-5

STORE (ST)

SOURCE STATEMENT

Operation

ST

Operation:

Operands

disp
disp(ptr)

@disp(ptr)

(EA)_(AC)

7 I I

1 1 0

OBJECT FORMAT

3 2 1 0

0 1 m ptr disp

byte 1 byte 2

The contents of the Effective Address (EA) are replaced by the contents of the Accumulator (AC). The
initial contents of EA are lost; the contents of AC are unaltered.

AND (AND)

SOURCE STA TEMENT

Operation

AND

Operation:

Operands

disp
disp(ptr)

@disp(ptr)

(AC) - (AC) /\(EA)

7 I I

1 1 0

OBJECT FORMAT

I , 3 2 1 I 0

1 0 m ptr disp

byte 1 byte 2

The contents of the Accumulator (AC) are ANDed with the contents of the Effective Address (EA), and
the result is stored in AC. The initial contents of AC are lost; the contents of EA are unaltered.

OR (OR)

SOURCE STATEMENT

Operation

OR

Operation:

Operands

disp
disp(ptr)

@disp(ptr)

(AC)_ (AC) V(EA)

OBJECT FORMAT

disp

byte 2

The contents of the Accumulator (AC) are inclusive-ORed with the contents of the Effective Address (EA),
and the result is stored in AC. The initial contents of AC are lost; the contents of EA are unaltered.

EXCLUSIVE~R (XOR)

SOURCE STATEMENT

Operation

XOR

Operation:

Operands

disp
disp(ptr)

@disp(ptr)

(AC) -(AC)V'(EA)

7. • • 3

1 1 1 0 0

byte 1

OBJECT FORMAT

2 1 0

m ptr disp

byte 2

The contents of the Accumulator (AC) are exclusive-ORed with the contents of the Effective Address (EA),
and the result is stored in AC. The initial contents of AC are lost; the contents of EA are unaltered.

5-6

DECIMAL ADD (DAD)

SOURCE STATEMENT

Operation

DAD

Operation:

Operands

disp
disp(ptr)

@di$p(ptr)

(AC)- (AC)10 + (EA>.!.O + (CY/L); (CY/L)

OBJECT FORMAT

disp

byte 2

The contents of the Accumulator (AC) and the contents of the Effective Address (EA) are treated as
2-digit binary-coded-decimal numbers greater than or equal to zero, and less than or equal to ninety
nine (0 (n (: 99). The contents of AC and EA and the Carry (CY/L) are added, and the 2-digit binary
coded-decimal sum is stored in AC. The initial contents of AC are lost; the contents of EA are unaltered.
The Carry Flag in the Status Register is set ifa carry occurs from the most significant decimal digit;
otherwise, it is cleared. The Overflow Flag is not affected.

Example of a binary-coded-decimal number:

ADD (ADD)

SOURCE STATEMENT

Operation

ADD

Operands

disp
disp(ptr)

@disp(ptr)

3 510

/ " ~
17

, ''I'' '°1 . 0 0 1 1. 0 1 0 1.

(AC) or (EA)

7 ,3

1 1 1 1 0

byte 1

Operation: (AC)- (AC) + (EA) + (CY/L); (CY/L), (OV)

OBJECT FORMAT

2 1 0

m ptr disp

byte 2

The contents of the Accumulator (AC) and the contents of the Effective Address (EA) are treated as
8-bit binary twos-complement numbers. The contents of the Accumulator (AC), the Effective Address
(EA), and the Carry (CY/L) are added algebraically, and the sum is stored in AC. The Carry Flag in
the Status Register is set if a carry from the most significant bit position occurs; otherwise, it is
cleared. The Overflow (OV) Flag in the Status Register is set if an overflow occurs (that is, if the
sign of the results differs from the sign. of both operands); otherwise, the overflow flag is cleared.

5-7

COMPLEMENT AND ADD (CAD)

5.2.2

SOURCE STATEMENT

Operation

CAD

Operands

disp
disp(ptr)

@disp(ptr)

7

1 1 1

OBJECT FORMAT

, 3 2 1 0

1 1 m ptr

byte 1

Operation: (AC) - (AC) + ~ (EA) + (CY/L); (CY/L), (OV)

disp

byte 2

The contents of the Accumulator (AC) and the contents of the Effective Address (EA) are treated as
8-bit binary numbers. The contents of the Accumulator (AC), the ones complement of the contents
of the Effective Address (EA), and the Carry (CY/L) are added algebraically, and the sum is
stored in AC. The initial contents of AC are lost; the contents of EA are unaltered. The Carry Flag
(CY/L) in the Staills Register is set if a carry from the most significant bit position occurs; otherwise,
it is cleared. The Overflow Flag (OV) in the Status Register is set if the sign of the result is the same
as the sign of (EA) and opposite the sign of (AC); otherwise, it is cleared.

NOTE

If the CY/L Flag is cleared initially, the logical (ones)
complement of (EA) is added to the Accumulator. If
the CY/L Flag is set, the twos complement of (EA)
is added.

Memory Increment/Decrement Instructions

The two double-byte instructions in this group may be used to maintain a software counter in memory. The
Memory Increment/Decrement Instructions are as follows:

Increment and Load.
Decrement and Load

ILD
DLD

The formats of the srurce statement and object code and the description of each Memory Increment/Decrement
Instruction follow.

NOTE

At the hardware level, these instructions access the
memory in a read-alter-write mode. The processor
retains control of the input/outIXlt rus between the
data read and write operations.

INCREMENT AND LOAD (ILD)

SOURCE STATEMENT OBJECT FORMAT

Operation

ILD 1010ptr

,0

disp

Operands

disp
disp(ptr)

«211,01 17 ,

~----------------~
byte 1 byte 2

Operation: (AC), (EA)- (EA) + 1

The contents of the Effective Address (EA) are incremented by 1, and the result is stored in the
Accumulator (AC) and, also, in EA. The initial contents of AC and EA are lost. The Carry and
Overflow Flags are not affected.

5-8

DECREMENT AND LOAD (DLD)

5.2.3

SOURCE STATEMENT

Operation

DLD

Operation:

Operands

disp
disp(ptr)

(AC). (EA) __ (EA) - 1

OBJECT FORMAT

1:'0 'T'OI . 1110 ptr disp

byte 1 byte 1

The contents of the Effective Address (EA) are decremented by 1. and the result is stored in the
Accumulator (AC) and, also, in EA. The initial contents of AC and EA are lost. The Carry and
Overflow Flags are not affected.

Immediate Instructions

The immediate instructions perform most of the same operations as the memory-reference instructions. The
data used in the operations comes from the byte immediately after the opcode byte; that is, the data byte is
the displacement. The hnmediate Instructions are as follows:

1.<>ad hnmediate • •
AND hnmediate • •
OR Immediate • • •
Exclusive-OR Immediate
Decimal Add Immediate
Add Immediate •••••
Complement and Add hnmediate •

• •• LDI
• •• ANI
• •• ORI

•• XRI
• •• DAI
• •• ADI

• CAl

The formats of the source statement and the object code and the description of each Immediate Instruction follow.

LOAD IMMEDIATE (LDl)

SOURCE STATEMENT

Operation

LDI

Operation:

Operand

data

(AC)-data

OBJECT FORMAT

r 0

000 100 data

byte 1 byte 2

The contents of the Accumulator (AC) are replaced by the data byte. The initial contents of AC are lost;
the data byte is unaltered.

5-9

AND IMMEDIATE (ANI)

SOURCE STATEMENT

Operation

ANI

Operation:

Operand

data

(AC)_ (A C) A data

OBJECT FORMAT

data

byte 2

The contents of the Accwnulator (AC) are ANDed with the data byte, and the result is stored in AC.
The initial contents of AC are lost; the data byte is unaltered.

OR IMMEDIATE (ORl)

SOURCE STATEMENT

Operation

ORI

Operation:

Operand

data

(AC) - (AC) Vdata

OBJECT FORMAT

011 data

byte 1 byte 2

The contents of the Accwnulator (AC) are inclusive-ORed with the data byte, and the result is stored
in AC. The initial contents of AC are lost; the data byte is unaltered.

EXCWSIVE OR IMMEDIATE (XRI)

SOURCE STATEMENT

Operation

XRI

Operation:

Operand

data

(AC) - (AC) '\l data

OBJECT FORMAT

100 data

byte 1 byte 2

The contents of the Accwnulator (AC) are exclusive-ORed with the data byte, and the result is stored
in AC. The initial contents of AC are lost; the data byte is unaltered.

5-10

DECIMAL ADD IMMEDIATE (DAI)

SOURCE STATEMENT OBJECT FORMAT

Operation Operand ,0

DAI data 101 data

byte 1 byte 2

Operation: (AC)- (AC)10 + datalO + (CY/L); (CY/L)

The data byte and the contents of the Accumulator are treated as 2-digit binary-coded-decimal numbers.
The contents of the Accumulator (AC), the data byte, and the Carry (CY/L) are added, and the 2-digit
binary-coded-decimal sum is stored in AC. The initial contents of AC are lost; the data byte is unal
tered. The Carry Flag in the Status P.'=lgister is set if a carry from the most significant decimal digit
occurs; otherwise, it is cleared. The Overflow Flag is not affected.

ADD IMMEDIATE (ADI)

SOURCE STATEMENT OBJECT FORMAT

Operation

ADI

Operand

data I ~: __ '_1 __ 1 ___ 1 __ 0 ___ 1 __ 0 __ '_:~1 LI_7_' ______ da_ta ________ '_0~1
byte 1 byte 2

Operation: (AC)_(AC) + data + (CY/L); (CY/L), (OV)

Data and the contents of the Accumulator (AC) are treated as 8-bit twos-complement numbers. The
contents of the Accumulator (AC), the data byte, and the Carry (CY/L) are added algebraically, and
the sum is stored in AC. The initial contents of AC are lost; the data byte is unaltered. The Carry
Flag in the Sta1us Register is set if a carry from the most significant bit position occurs; otherwise,
it is cleared. The Overflow Flag (OV) in the Sta1us Register is set if the sign of the result differs
from the sign of both operands; otherwise, it is cleared.

COMPLEMENT AND ADD IMMEDIATE (CAl)

SOURCE STA TEMENT OBJECT FORMAT

CAl data 111 1 .. : II ~ 7
' __ data __ '---,O I Operation Operand

byte 1 byte 2

Operation: (AC)-(AC) + ~ data + (CY/L); (CY/L), (OV)

The data byte and-the contents of the Accumulator (AC) are treated as 8-bit numbers. The contents
of the Accumulator (AC), the ones complement of the data byte, and the Carry (CY/L) are added
algebraically and the result is stored in AC. The initial contents of AC are lost; the data byte is
unaltered. The Carry Flag in the Status Register is set if a carry from the most significant bit position
occurs; otherwise, it is cleared. The Overflow Flag (OV) in the Sta1us Register is set if the sign of the
result is the same as the sign of the data byte and opposite the sign of (AC); otherwise, it is cleared.

NOTE

If the CY /L Flag is set initially, this opera tion is
equivalent to subtracting the data byte from the
Accumulator.

5-11

5.2.4 Transfer Instructions

The four double-byte instructions in this group are used for conditional and unconditional jumps within a
routine, and jumps to subroutines. The Transfer Instructions are as follows:

Jump
Jump if Positive.
Jump if Zero ..
Jump if Not Zero

.JMP

.JP

. JZ

.JNZ

The effective address of a jump that is PC-relative is the PC plus the displacement (disp). The range of a
PC-relative jump is -126 to + 129 bytes from the jump instruction. As with the memory-reference instructions,
the effective address does not affect the 4 most significant address bits; thus, wrap-around can occur at 4K
page boundaries. When 'ptr' specifies a pointer register other than 0, the 4 most significant bits of the PC are
replaced by the 4 most significant bits of the specified pOinter.

When assembling Transfer Instructions, the assembler reduces the specified displacement by one (1), so if
the jump is taken the next instruction executed is located at the label specified in the jump instruction; that is,
the effective address specified by the user.

Example:

Location Object
Counter Code

1000 9012 START: JMP LABEL ;JUMP TO LABEL

1014 LABEL:

PC (during execution) 1001
disp ~
EA 1013

The fonnats of the source statement and the object code and the description of the operation of each Transfer
Instruction follow.

JUMP (JMP)

SOURCE STA TEMENT

Operation

JMP

Operation:

Operands

disp
disp(ptr)

(PC)-EA

7 ,

1 0 0

OBJECT FORMAT

,2 1 ,0 17 , ,0

1 0 0 ptr disp

byte 1 byte 2

The Effective Address (EA) replaces the contents of the Program Counter (PC). The next instruction
is fetched from the location designated by the new contents of PC + 1.

5-12

JUMP IF POSITIVE (JP)

SOURCE STA TEMENT

Operation

JP

Operation:

Operands

disp
disp(ptr)

If (AC) ~O, (PC) - EA

7,

1

, J

° ° 1 °
byte 1

OBJECT FORMAT

,2 1 ° 1 ' ,
1 ptr disp

, °

byte 2

If the contents of the Accumulator (AC) are positive or zero, the Effective Address (EA) replaces the
contents of the Program Counter (PC). The next instruction is fetched from the location designated by
the new contents of PC + 1.

JUMP IF ZERO (JZ)

SOURCE STA TEMENT

Operation

JZ

Operation:

Operands

disp
disp(ptr)

If (AC) = 0, (PC) - EA

7 ,
1 ° °

OBJECT FORMAT

2 1 , ° I' , 1 1 ° ptr disp
, °

byte 1 byte 2

If the contents of the Accumulator (AC) are zero, the Effective Address (EA) replaces the contents of
the Program Counter (PC). The next instruction is fetched from the location designated by the new
contents of the PC + 1.

JUMP IF NOT ZERO (JNZ)

5.2.5

SOURCE STA TEMENT

Operation

JNZ

Operation:

Operands

disp
disp(ptr)

If (AC) i 0, (PC)-EA

OBJECT FORMAT

° 1
1 ' : Il~O I 1'_' ___ di_._SP ____ '_O

byte 1 byte 2

If the contents of the Accumulator (AC) are not zero, the Effective Address (EA) replaces the contents
of the Program Coo.nter (PC). The next instruction is fetched from the location designated by the new
contents of the PC + 1.

Extension Register Instructions

This group of eight single-byte instructions is used for arithmetic and logic operations between the Extension
Register (E) and the Accumulator (AC). The Extension Register Instructions are as follows:

Load AC from Extension . .
Exchange AC and Extension.
AND Extension. •
OR Extension . . • • • .
Exclusive-OR Extension
Decimal Add Extension .
Add Extension.
Complement and Add Extension.

5-13

. LDE

.XAE

.ANE

. ORE

.XRE

.DAE

.ADE

. CAE

The fonnats of the source statement and the object code and the description of the operation of eadl Extension
Register Instruction follow.

LOAD FROM EXTENSION (LDE)

SOURCE STATEMENT OBJEC T FORMAT

LDE 1" '°1 o 1 0 0 0 000

Operation

Operation: (AC)- (E)

The contents of the Accumulator (AC) are replaced by the contents of the Extension R~gister (E). The
initial contents of AC are lost; the contents of E are unaltered.

EXCHANGE AC AND EXTENSION (XAE)

SOURCE STATEMENT OBJECT FORMAT

Operation

XAE

Operation: (AC)-(E)

The contents of the Accumulator (AC) are exchanged with the contents of the Extension Register (E).

AND EXTENSION (ANE)

SOURCE STATEMENT OBJECT FORMAT

Operation ,0

ANE 0101000 0

Operation: (A C) - (AC) /\ (E)

The contents of the Accumulator (AC) are ANDed with the contents of the Extension Register (E), and
the result is stored in AC. The initial contents of AC are lost; the contents of E are unaltered.

OR EXTENSION (ORE)

SOURCE STATEMENT OBJECT FORMAT

ORE
17 , : I
0101100.

Operation

Operation: (AC) - (AC) V(E)

The contents of the Accumulator (AC) are inclusive-ORed with the contents of the Extension Register (E),
and the result is stored in AC. The initial contents of AC are lost; the contents of E are unaltered.

5-14

EXCLUSIVE-OR EXTENSION (XRE)

SOURCE STA TEMENT OBJECT FORMAT

XRE I' , , ° 1 o 1 100 0 0 0

Operation

Operation: (AC)- (AC)'\7(E)

The contents of the Accumulator (AC) are exclusive-ORed with the contents of the Extension Register (E),
and the result is stored in AC. The initial contents of AC are lost; the contents of E are unaltered.

DECIMAL ADD EXTENSION (DAE)

SOURCE STATEMENT OBJECT FORMAT

DAE I" '°1 o 1 1 0 100 0

Operation

Operation: (AC) - (AC)10 + (E>:J.O + (CY /L); (CY/L)

The contents of the Accumulator (AC) and the Extension Register (E) are treated as 2-digit binary-coded
decimallUlmbers, greater than or equal to zero. The contents of the Accumulator (AC), Extension
Register (E), and the Carry (CY/L) are added, and the sum is stored in AC. The initial contents of AC
are lost; the contents of E are unaltered. The Carry Flag in the status Register is set if a carry from
the most significant decimal digit occurs; otherwise, it is cleared. The Overflow Flag is not affected.

ADD EXTENSION (ADE)

SOURCE STA TEMENT OBJECT FORMAT

ADE I" '°1 o 1 1 1 0 000

Operation

Operation: (AC) - (AC) + (E) + (CY/L); (CY/L), (OV)

The contents of the Accumulator (AC) and the Extension Register (E) are treated as 8-bit binary, twos
complement numbers. The contents of the Accumulator (AC), Extension Register (E), and the Carry
(CY/L) are added algebraically, and the sum is stored in AC. The initial contents of AC are lost; the
contents of E are unaltered. The _~arry Flag (CY /L) in the Status Register !§~e!_i!.~e~:rr..Y f.!'9ll} .. t1:J.~
most significant bit position occurs; otherwise, it is cleared. The Overflow Flag (OV) ill.the Status
Register is set if the sign of the result differs from the sign of both operands; otherwise, it is cleared.

5-15

COMPLEMENT AND ADD EXTENSION (CAE)

5.2.6

SOURCE STA TE ME NT

Operation

CAE

OBJECT FORMAT

1 1 1 0

Operation: (AC)_(AC) + (E) + (CY/L); (CY/L), (OV)

The contents of the Accumulator (AC) and Extension Register (E) are treated as 8-bit binary
numbers. The contents of the Accumulator (AC), the ones complement of the contents of
the Extension Register (E), and the Carry (CY/L) are added algebraically, and the result is
stored in AC. The initial contents of AC are lost; the contents of E are unaltered. The Carry
Flag (CY/L) in the Status Register is set if a carry from the most significant bit pOSition occurs;
otherwise, it is cleared. The Overflow Flag (OV) in the Status Register is set if the sign of the
result is the same as the sign of (E) and opposite the sign of (AC); otherwise, it is cleared.

NOTE

If the CY/L Flag is set initially, this operation
is equivalent to subtracting the contents of E from
the contents of AC.

Pointer Register Move Instructions

The three single-byte instructions in this group are used for transfers between the Pointer Registers and the
Accumulator or the Program Counter. The Pointer Register Move Instructions are as follows:

Exchange Pointer Low • • • • • • • • • • •
Exchange Pointer High • • • • • • • • • • •
Exchange Pointer with Program Counter. •

XPAL
XPAH
XPPC

The formats of the source statement and the object code and the description of each Pointer Register Move
Instruction follow.

EXCHANGE POINTER LOW (XPAL)

SOURCE STA TEMENT

Operation

XPAL

Operation:

Operand

ptr

OBJECT FORMAT

7 I

001100 ptr

The contents of the Accumulator (AC) are exchanged with the low-order byte (bits 7 through 0) of the
deSignated Pointer Register (PTR).

5-16

EXCHANGE POINTER HIGH (XPAH)

SOURCE STA TE ME NT OBJECT FORMAT

Operation Operand 7 , 2 1,0

XPAH ptr o 0 1 1 0 1 ptr

Operation:

The contents of the Accumulator (AC) are exchanged with the high-order byte (bits 15 through 8) of the
designated Pointer Register (PTR).

EXCHANGE POINTER WITH PC (XPPC)

SOURCE STATEMENT

Operation

XPPC

Operation:

Operand

ptr

(PC)-(PTR)

OBJECT FORMAT

17
, ''1',°1 001111 Pt~

The contents of the Program Counter (PC) are exchanged with the designated Pointer Register (PTR).

5.2.7 Shift, Rotate, Serial Input/CAltput Instructions

The five single-byte instructions in this group shift or rotate the Accumulator or perform serial input/output
operations using the Extension Register. The Shift, Rotate, and Seriallnp.tt/Output Instructions are as follows:

Serial Inplt/Output •
Shift Right • • • • • •
Shift Right with Link
Rotate Right. • • • •
Rotate Right with Link

S10
SR
SRL
RR
RRL

The formats of the source statement and the object code and the description of ihe operation of each Shift, Rotate,
or Serial Inplt/Output Instruction follow.

SERIAL INPUT/OUTPUT (SI0)

SOURCE STATEMENT OBJECT FORMAT

Operation ,0

S10 o 0 0 1 100 1

Operation:

The contents of the Extension Register (E) are shifted right one bit. The initial content of bit·O is shifted
to the data output pin SOUT. The signal on the data input pin SIN is shifted into bit 7.

B~-----t .. ~1 ~"';NS;O~ ~G~~;II------1 1 SOUT I

5-17

SHIFT RIGHT (SR)

SOURCE STATEMENT OBJECT FORMAT

SR I" ,01 000 1 110 0

Operation

Operation:

The contents of the Accumulator (AC) are shifted right one hit. The initial content of hit 0 is lost.
Zero is shifted into hit 7.

0- -

SHIFT RIGHT WITH LINK (SRL)

SOURCE STA TEMENT OBJECT FORMAT

Operation 7 I , 0

SRL 0 0 0 1 1 1 0 1

The contents of the Accwnulator are shifted right one hit. The initial content of hit 0 is lost. The
Link (CY/L) Flag from the Status Register is shifted into hit 7. The Link Flag is not altered.

I CY/L ~ - - ACCUMULATOR

ROTATE RIGHT (RR)

SOURCE STA TEMENT OBJECT FORMAT

RR
I' , , 0 I o 0 0 1 1 110

Operation

Operation:

The contents of the Accumulator (AC) are rotated right one hit. The initial content of hit 0 is shifted
into hit 7.

r -
I.
L

- - - - ~
1

- - - c- - - - - - - -c - - - __ I

5-18

ROTATE RIGHT WITH LINK (RRL)

5.2.8

SOURCE STATEMENT OBJECT FORMAT

Operation
1 0

RRL 1 111 1

Operation:

The contents of the Accumulator (AC) are rotated right one bit. The initial content of bit 0 is shifted
into the Link Flag (CY/L) of the Status Register, and the initial content of the Link Flag is shifted into
bit 7 of AC.

r -
I
L _

7 I 0

- -1CY/L~--" ACCUMULATOR - - - - - - - -.,

- - - - ~ - - - - - - - - _~ - - - - - - - ~ - - - - - I

Miscellaneous Instructions

There are nine instructions in this group, eight single-byte, and one double-byte. The Miscellaneous Instructions
are as follows:

HALT (HALT)

SOURCE STATEMENT

Operation

HALT

Halt •••••••••••
Clear Carry/Link Bit. •
Set Carry/Link Bit
Disable Interrupt • • • •
Enable Interrupt ••••
Copy Status to Accumulator
Copy Accumulator to Status. •
No Operation
Ilelay. • • . • •••.

Operation: Pulse H-flag at I/o status time.

HALT
CCL
SCL
DINT
lEN
CSA
CAS
NOP

DLY

OBJECT FORMAT

1 0

o 0 000 000

In a particular application system, this instruction may be used for functions other than HALT. For
detailed information on the hardware operation of the halt instruction, see the SC/MP Users Manual.

5-19

CLEAR CARRY/LINK (CCL)

SOURCE STATEMENT OBJECT FORMAT

CCL 17, '°1 000 000 1 0

Operation

Operation: (CY/L)-O

The Carry/Link (CY/L) Flag in the Status Register (SR) is cleared. The remaining bits in SR are not
affected.

SET CARRY/LINK (SCL)

SOURCE STATEMENT OBJECT fORMAT

SCL
17, ,°1
00000011

Operation

Operation; (CY/L)-l

The Carry/Link Flag in the Stat us Register (SR) is set. The remaining bits in SR are not affected.

ENABLE INTERRUPT (lEN)

SOURCE STATEMENT OBJECT FORMAT

Operation

lEN

Operation: (IE)-l

The Interrupt Enable (IE) Flag in the Status Register (SR) is set; the remaining bits in SR are not affected.
The processor interrupt system is enabled. Interrupts will be processed as received after the next instruc
tion is fetched and executed.

5-20

DISABLE INTERRUPT (DINT)

SOURCE STA TE ME NT OBJECT FORMAT

Operation to
DINT o 0 0 001 0 0

Operation: (IE)-O

The Interrupt Enable (IE) F1ag in the sta1us Register (SR) is cleared; the other bits in SR are not affected.
The processor interrupt system is disabled. Interrupts which occur while the system is disabled will not
be processed.

COPY STATUS TO AC (CSA)

SOURCE STATEMENT OBJECT FORMAT

Operation to
CSA o 0 0 0 0 1 1 0

Operation: (AC)-(SR)

The contents of the Accumulator (AC) are replaced by the contents of the sta1us Register (SR). The
initial contents of AC are lost; the contents of SR are not altered.

COPY AC TO STATUS (CAS)

SOURCE STATEMENT OBJECT FORMAT

CAS
I' , ,0 1 o 0 000 111

Operation

Operation: (SR)-(AC)

The contents of the Accumulator (AC) replace the contents of the Sta1us Register (SR). SR bits 4 and 5
are external sense bits and are not affected by this instruction. The initial contents of SR (except for
bits 4 and 5) are lost; the contents of AC are not altered.

7 6 5 4 3 2 1 o

ACCUMULA TOR

7 6 5 4 3 2 1 o
Sta1us Register

If IE is changed from 0 to 1 by this instruction, the interrupt system will be enabled after the next
instruction is fetched and executed.

5-21

NO OPERA TION (NOP)

SOURCE STA TE ME NT OBJECT FORMAT

Operation 17, ,°1 ~ 0 0 0 100 0 NOP

Operation: (PC) - (PC) + 1

The Program Counter (PC) is incremented by 1. The NOP instruction takes the minimum 5-microcycle
execution time. Undefined opcodes encountered are considered to be one-byte or two-byte NOPs and
may take 5 to 10 microcycles to execute depending on the code.

DELAY (DLY)

disp

SOURCE STATEMENT OBJECT FORMAT

Operation

DLY

Operation:

Operand

disp ~1,_7_I_O __ O __ O ___ 1 __ 1 __ 1 __ 1_:~11 ~_7_1 ______ di_'S_P _______ I_O~
byte 1

DELAY = 13 + 2(AC) + 2 disp + 29 disp

byte 2

This instruction delays processing a variable length of time. The contents of the Accumulator (AC) and
the Displacement (disp) are considered unsigned binary numbers (maximum value of each is 255). The
number computed from the given equation is the execution time in microcycles. The following table gives
some typical execution times. Range of delay is from 13 to 131593 microcycles.

0

1

2

3

4

5

6

7

8

9

10

AC

o 25 50 75 100 125 150 175 200 225

13 63 113 163 213 263 313 363 413 463

527 577 627 677 727 777 827 877 927 977

1041 1091 1141 1191 1241 1291 1341 1391 1441 1491

1555 1605 1655 1705 1755 1805 1855 1905 1955 2005

2069 2119 2169 2219 2269 2319 2369 2419 2469 2519

2583 2633 2683 2733 2783 2833 2883 2933 2983 3033

3097 3147 3197 3247 3297 3347 3397 3447 3497 3547

3611 3661 3711 3761 3811 3861 3911 3961 4011 4061

4125 4175 4225 4275 4325 4375 4425 4475 4525 4575

4639 4689 4739 4789 4839 4889 4939 4989 5039 5089

5153 5203 5253 5303 5353 5403 5453 5503 5553 5603

To determine AC and disp for a specific number of microcycles (m) use the following equations:

disp = truncate «m-13)/514)
AC = «m-1S) - 514(disp»/2

Using these equations, the delay time will be either exact or one microcycle less than the
required number of microcyc1es.

5-22

5.3 PSEUDO INSTRUCTIONS

A Pseudo Instruction is a statement that appears to the assembler the same as any other assembly-language
statement but results in the generation of several machine-language instructions.

Only one Pseudo Instruction statement is implemented in SC/MP assembly language; it is the Jwnp to Subroutine
statement described below.

JUMP TO SUBROUTINE (JS)

Format:

Operation

JS

Operands

ptr, expression

Memory: 7 bytes

Generated Code: LDI H(expression-l)*
XPAH ptr
LDI L(expression-l)*
XPAL ptr
XPPC ptr

* This is not legal notation for the assembler

When a Jump to Subroutine is invoked, the code generated results in the setting of the specified Pointer Register
(PTR) to the value, expression-I. In calculating this value, the memory page structure of SC/MP is taken into
account (see 3.4). The contents of the PTR is then exchanged with the contents of the PC. As a result, the
next instruction to be executed will be that at the location addressed by expression. The Pointer Register (PTR)
will contain the address of the XPPC instruction, allowing a subroutine return to the instruction following.

The 4K page boundary should be kept in mind when assigning expression (3.4).

5.4 ASSIGNMENT STA TEMENT

[label) symbol = expression [;comments)

The 'Assignment statement' assigns the value of the expression on the right of the equals sign to the symbol on
the left of the equals sign. The Statement may be preceded by a series of labels.

Example:

RETURN = OD ;SYMBOL HAS CARRIAGE RET CODE

The Assignment Statement may set the location counter or refer to the current value of the location counter in
an expression. The period '.' is a special symbol used to specify the location counter. The location-crunter
symbol may appear on either side of the equals sign. If it appears on the left, it is assigned the value on the
right side of the equals sign. The programmer may refer to the current setting of the location counter by re
ferencing the '. ' in the expression to the right of the equals sign. Assignment statements using the location
counter symbol are coded as free-form statements. For example:

.=20

TABLE: .=.+10

;SET LOCATION COUNTER TO 20
;LOCATION CTR IN ABSOLUTE MODE
;RESERVE 10 LOCATIONS FOR TABLE

If the'. ' appears on the left, the expression on the right must be defined during the first pass so subsequent
label assignments may be made.

5-23

If the symbol on the left is not'. " then the expression on the right need not have a value wring the first pass,
but must have a value wring the second pass. This permits only one level of forward referencing. An example
of more than one level of forward referencing follows:

FST:
SND:
THD:

A=B+2
B=C-l
0=25

This expression undefined wring pass 2.
This expression undefined wring pass 1.
This expression absolute.

5.5 DffiECTIVE STATEMENTS

The Directive Statements control the assembly process and may generate data in the object program. The
directive operator may be preceded by one or more labels; and may be followed by a comment. It occupies the
operator field and is followed by either no operand or as many operands as required by the particular operator.

Assembler directive operators and their functions are summarized in table 5-4. Note that all directive operators
begin with a period for easy visual differentiation from the instruction operator mnemonics in the output listing.
Each directive operator is described in more detail in the following paragraphs.

Table 5-4. Summary of Assembler Directives

Directive Name Function

• TITLE Identification of program •
• END Physical end of soorce program •
• LIST Listing outplt control •
• SPACE Space n lines in ootPlt listing •
• PAGE Outplt listing to top-of-form •
• BYTE 8-bit (single-byte) data generation •
• DBYTE 16-bit (dooble-byte) data generation •
• ASCn Data generation for character strings •
• LOCAL

"'\
Establish a new local symbol region.

.IF
• ELSE } Conditional assembly directive.
.ENDIF ..I
• FORM Field Specification •
• ADDR Address constant generation •

5.5.1 • TITLE Directive

[label) • TITLE symbol [. string] [;comments]

The • TITLE directive identifies the load mowle in which it appears with a symbolic name and an optional
definitive title. If a • TITLE directive does not appear in the program, the load module is given the name
MAINPR. If more than one. TITLE directive is used, the last one encoontered specifies the symbolic name.

The symbolic name and the string must meet the symbol and string construction restrictions discussed in
chapter 4.

Example:

• TITLE TLLKP, 'TABLE LOOKUP - 06/15/75'

5-24

5.5.2 • END Directive

[label] • END [address] [;comments]

The • END directive signifies the physical end of the source program. The optional address in the operand
field may be either a symbol or a constant and indicates an execution address to the loader. In other words,
it causes a branch to the address of the first executable instruction (entry point in contrast to load point) after
the load is complete.

Examples:

1. No branch required

• END

2. Jump to the entry point at X'00A9

.END X'00A9

3. Jump to the entry point labeled START

.END START

5.5.3 • LIST Directive

[label] • LIST immediate [;comments]

The • LIST directive suppresses or reinstates the assembly program listing. Normally, the assembler is ini
tialized in list mode; that is, a listing is produced as a result of an assembly operation. If a • LIST directive is
encountered with a negative or zero operand, the outpJ.t listing is suppressed. Otherwise, the directive rein
states the listing.

Examples:

1. Suppress the listing

.LIST 0

2. Reinstate the listing

.LIST 1

5.5.4 .SPACE Directive

[label] • SPACE immediate [;comments]

The • SPACE directive skips forward a specified number of lines on the output listing.

Examples:

1. Skip 20 (decimal) lines

.SPACE 20

2. Skip 20 (hexadecimal) lines

.SPACE 020
or

.SPACE X'20

5-25

5.5.5 · PAGE Directive

[label] . PAGE [string] [;comments]

The. PAGE directive spaces forward to the top of the next page on the ruqut listing. The optional string is
printed as a page title on each page until a • PAGE directive containing a new string is encountered. No action
is taken (except for a new page title) if the. PAGE directive is issued immediately after an assembler generated
top-of-page request.

Example:

• PAGE 'TTY I/O ROUTINES'

5.5.6 · BYTE Directive

[label] . BYTE expression[, expression ...] [;comments]

The. BYTE directive stores sequentially in memory one 8-bit byte for each given expression. If the directive
has a label, it refers to the address of the first expression. The value of each expression must be in the range,
-128 through +255.

5.5.7

Examples:

1. Single expression without a label

.BYTE X'FF

2. Multiple expressions with a label

TBL: .BYTE MPR+10,X'FF,X'OO

NOTE

TBL is assigned the location counter value of the
byte containing the expression MPR+10.

· DBYTE Directive

[label] .DBYTE expression[, expression ...] [;comments]

The. DBYTE directive stores 16-bit data in two consecutive 8-bit memory locations. Each expression of a
. DBYTE directive is evaluated, and its value is placed in the next available pair of memory locations. The
value of each expression must be in the range, -32768 through +65535.

The. DBYTE directive generates 16-bit address constants for use with memory-reference or memory-incre
ment/decrement instructions (5.2.1 and 5.2.2). If the directive has a label, it refers to the memory address
of the first byte generated by the directive.

Examples:

1. Without a label

. DBYTE X'77FF

5-26

2. With a label

LABL: .DBYTE X'77FF

NOTE

LABL is assigned the value of the location of X'77.

5.5.8 . ADDR Directive

[label] .ADDR expression [, expression ...] [;comments]

The .ADDR directive generates 16-bit address constants to be used by transfer instructions. Each expression
in the directive is evaluated, is decremented by 1, and then is placed in the next available pair of memory bytes.
The decrementing takes into account the modulo-4096 address arithmetic used in SC/MP.

The effect of this directive is that if a pointer register is loaded with the resulting constant and exchanged with
the program counter, the next instruction to be executed will be the one addressed by the value, expression.

5.5.9

Example:

ADl: .ADDR

LD
XPAH
LD
XPAL
XPPC

The subroutine OUTPUT is executed •

• ASCII Directive

[label] . ASCII string [, string ...]

OUTPUT

ADI
P3
ADl+l
P3
P3

[;comments]

The .ASCII directive stores data in successive memory locations by translating the characters in the string
into their 7-bit ASCII equivalent code. Each string must be enclosed in single quote marks ('). Each character
occupies one byte in memory. The . ASCII directive is used primarily to generate messages for outplt on tele
typewriter or printer.

Example:

. ASCII 'INPUT OF VALUE OF X'

5.5.10 • LOCAL Directive

[label] . LOCAL [;comments]

The • LOCAL directive establishes a new program section for local symbols (symbols beginning with a dollar
sign ($». Designated symbols between two • LOCAL directive statements have the value assigned to them only
within that particular section of the program. Note that a • LOCAL directive is assumed at the beginning and the
end of a program; thus, one. LOCAL directive within a program divides the program into two sections.

5-27

If the first character of a symbol is a dollar sign ($), the assembler attaches a unique character from the ANSI
character set to the end of the symbol. Initially, this character is an exclamation point 'I' (X'2l). Each time a
• LOCAL directive is encountered, the value of the added character is advanced by one with the letter "Z" (X'5A)
as the last legal value. Therefore, up to 58 • LOCAL directives can appear in one assembly.

5.5.11

Example:

• LOCAL

Conditional Assembly Directives

[label] .IF
• ELSE
.ENDIF

expressionl [, expression2] [jcomments]
[jcomments]
[jcomments]

The conditional assembly directives selectively assemble portions of a source program based on the value of
the initial expression in the • IF directive statement.

All source statements between a • IF directive and its associated. ENDIF are defined as a • IF-. ENDIF block.
These blocks can be nested to a depth of ten. The. ELSE directive can be included optionally in a • IF-. ENDIF
block. The. ELSE directive segments the block into two parts. The first part of the source statement block is
assembled if the .IF expression is greater than zeroj otherwise, the second part is assembled. When the
.ELSE directive is not included in a block, the block is assembled only if the • IF expression is greater than
zero. If expression2>O, the source code not assembled is listed anywayj if expresSion2-<:O, the source code
is listed only if it is assembled. The initial condition for this feature is not to list. If the condition is changed
by including expression2, the new condition remains until modified. If an error is detected in either expression!
or expression2, the assembler assumes a TRUE value (greater than zero).

Examples:

1. Two-part conditional assembly

.IF ooMPR

Assembled if COMPR greater than zero •

• ELSE

Assembled if COMPR less than or equal to zero •

• ENDIF

5-28

Chapter 6

PROGRAMMING TECHNIQUES

6.1 INTRODUCTION

This chapter discusses the programming techniques used to produce efficient SC/MP object code. Examples of
coding are included to illustrate the method by which the techniques are implemented.

6.2 STACK PROGRAMMING

1 A convenient way of temporarily saving status and return addresses from subroutines and interrupt service
routines is to maintain a stack in read/write memory. An advantage of a software stack compared to a hard
ware stack is that the hardware stack is limited in size to a fixed number of storage locations; any additional
data pushed onto a stack cause an overflow and loss of data at the bottom of the stack. A software stack, on the
other hand, can be made virtually any length, so overflow cannot occur. Another advantage of using software
stacks is that more than one stack can be maintained.

The system software uses the following pointer register aSSignments:

Pointer Register

PI
P2
P3

Function

ROM Pointer and miscellaneous
Stack Pointer
Subroutine Pointer

Storing and retrieving data from the stack is accomplished by the following methods:

1. Store one byte of data or address

ST @-I(P2) ;PUSH A BYTE ONTO THE STACK

2. Retrieve one byte of data or address

LD @1(P2) ;PULL A BYTE OFF THE STACK

It should be noted that the auto-indexing feature is used to move the stack pointer address up or down the stack.
The stack pointer (P2) always points to the last value pushed onto the stack.

6.2.1 Stack Operations

Using the stack conventions previously stated creates a stack that begins in high memory and extends downward.
The most effective method of using this stack consists of fixing the base location of the stack, allocating any per
manent locations required by the program, and then allowing the dynamic portion of the stack to expand and con
tract below that. For example see following page.

6-1

Base
(high memory)

Start

(low memory)

+

Permanent Area - contains global data for one or more
programs. Fixed structure.

Dynamic Area - used by a particular program or sub
routine at a particular time. The structure of this area
depends upon the state of the system.

The permanent area of the stack may always be accessed by providing two words (labeled STKPT) for saving
the stack pointer and then using the following code.

BASE

STKPT

LDI
XPAL
XAE
LDI
XPAH
ST
LDE
ST

.=. -2
.-BASE

L(BASE)
P2

H(BASE)
P2
STKPT(P2)

STKPT + 1 (P2)

;PERM. AREA OF STACK

;SA VE La-HALF OF PTR

Loading a Pointer from a word-pair pointed to by the same pointer.

LD O(P2) ; LOAD UPPER POINTER ADDRESS
XAE ;SAVE
LD +1 (P2) ; LOAD LOWER POINTER ADDRESS
XPAL P2 ;TRANSFER TO LOWER P2
LDE ;RESTORE UPPER ADDRESS
XPAH P2 ;TRANSFER TO UPPER P2

6-2

6.2.2 Repeatable Subroutine Calls

H P3 is being used as a subroutine pOinter, the subroutine may be called repeatably without reloading P3 as
long as P3 is not disturbed. The subroutine must be set up as follows:

SIN:

XPPC
JMP

P3
SIN

;SUBROUTINE RETURN
;FOR REENTRY·

All other things being equal, subroutines should be coded as repeatable.

6.3 SUBROUTINES

Because of the problems involved when a program crosses a page boundary, it is suggested that the programmer
code his programs in modules smaller than a page. Organizing code into small subroutines is a more efficient
way of coding, since it is easier to verify several small subroutines than one large program.

There are two methods used to implement subroutines, depending on whether the subroutine is single level or
nested. Nesting is a condition where a subroutine contains calls to other subroutines.

6.3.1 Multilevel Subroutines

To implement multilevel (nested) subroutines, a stack must be created in memory. As an example, pointer P2
could be defined as the stack pointer. The address loaded into P2 would point to the top of the stack. This
address would be a location in read/write memory.

H nesting is not required, subroutines can be called using the pointer registers to save the return address.

The following examples assume that SUBR is the label on the first instruction of the subroutine.

SUBROUTINE JUMP
SUBRI

LDI
XPAL
LDI
XPAH
XPPC

SUBROUTINE RETURN
XPPC

SUBR-l
L(SUBR1)
P3
H(SUBR1)
P3
P3

P3

;LOAD LOWER SUBROUTINE ADDRESS
;TRANSFER LOWER TO P3L
;LOAD UPPER SUBROUTINE ADDRESS
;TRANSFER UPPER TO P3H
;EXCHANGE PC AND P3

;RETURN FROM SUBROUTINE EXCHANGE

H multilevel subroutines are used, the current contents of the pointer register should be saved on the top of the
stack and restored upon return from the subroutine.

LDI L(SUBR1)
XPAL P3
ST @-I(P2)
LDI H(SUBR1)
XPAH P3
ST @-I(P2)
XPPC P3

6-3

6.3.2 Jump Immediate

A jump immediate can be implemented directly using the subroutine jump as shown in example 6.3.1, but not
executing a subroutine return. This facility allows a jump to any address in memory.

6.3.3 Conditional Subroutine Jumps

Conditional subroutine jumps can be implemented using a condition jump test to bypass the subroutine call. For
example:

JP NOJSR ;NO SUBROUTINE JUMP IF AC POSITIVE

SUBROUTINE CALL AS IN OTHER EXAMPLES

NOJSR:

6.3.4 Multiple Subroutine Return

The same programming technique described in 6.3.1 can be used to establish more than one return address after
a subroutine has been executed. This technique can be used to test a flag condition and branch conditionally to
one of two or more locations, depending upon the condition of the flag. For example, a subtract routine might
require three returns: one for a positive result, one for a negative result, and one for a zero result.

The example below affects a conditional call from a subroutine on the current page.

TESTl:

RETURN:

LDI
XPAL
ST
LDI
XPAH
ST
XPPC
JMP
ST

LD
XPAH
LD
XPAL
JP
LD
XPPC

LOWER
P3
@-1(P2)
UPPER
P3
@-I(P2)
P3
ERR 1
RESULT

@1(P2)
P3
@1(P2)
P3
RETURN
@2(P3)
P3

;LOAD LOWER RETURN ADDRESS

;PUSH ONTO STACK
;LOAD UPPER RETURN ADDRESS

;PUSH ONTO STACK
;JUMP TO SUBROUTINE
;ERROR RETURN
;TEST OK, CONTINUE

;LOAD UPPER RETURN ADDRESS
;TRANSFER TO P3 HIGH
;LOAD LOWER RETURN ADDRESS
;TRANSFER TO P3 LOW
;ERROR IF AC POSITIVE OR ZERO
;INCREMENT RETURN ADDRESS
;EXC HANGE P3 AND PC

6-4

6.3.5 Transferring Data to Subroutines

Frequently parameters must be passed to a subroutine when it is called; this is accomplished by listing the
parameters in the bytes following the subroutine call and by incrementing the return address to the next exe
cutable instruction. Below is an example of the coding for this data transfer technique:

MATH:

JS
. BYTE
. BYTE

LD
LD
ST
LD
ST

P3,MATH
X'OI
X'02

@1(P3)
@1(P3)
PARMI
(P3)
PARM2

;JUMP TO SUBROUTINE
;2 BYTES PASSED TO
;SUBROUTINE

;ADJUST PTR TO 1ST PARAMETER
;FETCH PARAMETER

;FETCH PARAMETER 2

At this point, the return address is in P3. The programmer may elect to leave it in P3, save it on the stack 'or
store it locally until it is needed to return from the subroutine.

It also may be convenient to store all of the subroutine input parameters on the stack before calling the subrou
tine and then to have the subroutine place any output parameters on the stack before executing a return.

6.4 LOOP COUNTER

When executing a routine in which a group of instructions is repeated a given number of times, it may be con
venient to use a memory location as a counter register. The address of the memory location used as a counter
would be stored in one of the pointer registers.

An advantage of the use of a memory location as a counter rather than an internal register (such as E) that is
the Increment and Load (ILD) and Decrement and Load (DLD) Instructions associated with memory-location
increments and decrements do not affect the value of the carry bit in the status register. This is particularly
important in serial arithmetic operations, where the carry bit must be saved for the next step.

It should be noted that both the ILD and DLD instructions destroy the contents of the accumulator; so the contents
of the accumulator should be saved temporarily if they are needed in additional calculations.

The following exemplifies the implementation of a memory counter for a program containing a loop that is to be
executed eight times.

LOOP:

NEXT:

LDI H(CNTR)
XPAH PI
LDI L(CNTR)
XPAL PI
LDI 8
ST (PI)

first instruction of loop

*XPAL P3
DLD O(Pl)
JZ NEXT

*XPAL P3
JMP LOOP

*XPAL P3

; LOAD HIGH ORDER ADDRESS OF COUNTER
;Pl AS COUNTER POINTER
; LOAD LOW ORDER ADDRESS OF COUNTER
;Pl AS COUNTER POINTER
; LOAD NUMBER OF TIMES TO LOOP
;STORE COUNTER VALUE IN MEMORY

;SAVE AC IN P3L
;DECREMENT COUNTER
;IF COUNTER = 0, END OF LOOP
;RECOVER AC FROM P3L
;REPEAT LOOP
;RECOVER AC FROM P3L

* These instructions are required only if the value of the accumulator must be saved
for next loop.

6-5

In a similar manner, the counter and temporary storage for the AC can be saved on the stack, thereby eliminat
ing the overhead of initializing PI (in the preceding example). The Extension Register may also be used as
temporary storage for saving the Accumulator.

6.5 PAGE CONSIDERATIONS

PC-relative memory-reference instructions can only reference memory within the current page (4096 bytes);
this requires the programmer to take certain precautions and use the techniques described in this section to
avoid problems at page boundaries.

6.5.1 Instructions at the Page Boundary

The program counter does not automatically increment across page boundaries, but effects a "wrap-around" in
the same page. Therefore, a two-byte instruction might occupy the last two bytes of a page or the last and first
byte of the same page, rut not the last byte clone page and the first byte of the next page. The assembler flags
the condition of a two-byte instruction whose first byte is at the page boundary so the programmer can modify
the source code.

6.5.2 Programs Residing Across Page Boundaries

Since PC-relative memory references are limited to the page occupied by the instruction, the simplest way of
writing a program is to organize it as short subroutines, each of which resides within one page of memory. It
is usually advisable not to fill a page with one subroutine, since corrections that require additional program
steps could not easily be incorporated.

Using indexed addressing, it is relatively simple to write programs that occupy more than one page of memory.
The first instruction on each page loads a pOinter register with the alternate page address; indexed addressing is
used to reference the alternate page, and PC-relative addressing is used to reference the current page. The
techniques used to load a subroutine address apply here.

6.6 TEXT PROGRAMMING TECHNIQUES

When programs require extensive dialog, textual display, or printout, attention shoold be given to the technique
that programs the textual printout, since it is likely to be subject to modification. One technique that readily
lends itself to the se IMP is the Literal Pool. Using this technique, all text is stripped of ruplication; the re
sulting text then is stored in one area of memory. For example, consider the following five messages:

1. ENTER 5 COEFFICIENTS

2. COEFFICIENT OUT OF ALLOWED RANGE. RE-ENTER

3. ANSWER =

4. ANOTHER?

5. NO VALID ANSWER. RE-ENTER 5 COEFFICIENTS

6-6

Text for the five messages may be stored in a literal pool as shown below •

Ll: • ASCII '.RE-'
L2: • ASCII 'ENTER'
L3: • ASCII '5'
L4: • ASCII ' COE FFICIENT'
L5: • ASCII 'S'
L6: • ASCII ' OUT OF ALLOWED RANGE'
L7: • ASCII 'ANOTHER? '
L8: .ASCII 'ANSWER'
L9: • ASCII '= ,
LI0: • ASCII 'NO VALID'
Lll: .=.+1

Messages are created by indexing the literal pool using a two-byte repeating sequence. Byte 1 holds the dis
placement from the base of the literal pool to the first required character. Byte 2 holds the value of the number
of characters to be printed. If the first byte of the byte pair holds the value X' FF, it signifies the end of the
messagej otherwise, another segment of the message is sought in the next byte pair. Each of the five messages
described above could be created by the index sequence shown below •

11: • BYTE L2-Ll jENTER 5 COEFFICIENTS
• BYTE L6-L2
• BYTE X'FF

12: • BYTE L4-Ll jCOEFFICIENT
• BYTE L5-L4
• BYTE L6-Ll jOUT OF ALLOWED RANGE
• BYTE L7-L6
• BYTE LI-Ll j.RE-ENTER
• BYTE L3-Ll
• BYTE X'FF

13: • BYTE L8-Ll jANSWER=
• BYTE LIO-L8
• BYTE X'FF

14: • BYTE L7-Ll jANOTHER?
• BYTE L8-L7
• BYTE X'FF

15: • BYTE LlO-Ll jNO VALID ANSWER
• BYTE Lll-LIO
• BYTE L8-Ll
• BYTE L9-LS
• BYTE LI-Ll j. REENTER 5 COEFFICIENTS
• BYTE L6-Ll
• BYTE X'FF

A subroutine generates the printed messages. To write a message, the procedure is to call the subroutine and
to specify the index that identifies the message to be printed. For example, to print "Answer =" the call would
be as shown below.

LABEL JMP WRIT jWRITE "ANSWER ="
.DBYTE 13

jRE TURN POINT

Subroutine WRIT calculates the section of the literal pool to be printed. The first character is at the address:
Ll plus the contents of 13. The number of characters to be printed is derived from the contents of 13 + 1. The
next byte contains X'FF, so printing is finishedj otherwise, printing would continue with the next pair of index
bytes specifying the next string of characters.

6-7

6.7 INPUT AND OUTPUT PROGRAMMING TECHNIQUES

The programming of data transfers between read/write memory and peripheral dcvices is generally classified
as inp.lt/output programming. Depending on the significance of the input/ootpIt operations in the overall pro
gram, different approaches to input/output program implementation are recommended; these approaches are
described in the following sections.

6.7.1 Programmed Input/Output

A programmed input/output operation is initiated and completed under the control of the initiating program. In
figure 6-1, the program being executed starts the input/output operation; then the program waits for the opera
tion to be completed before continuing.

PROGRAM
BEING

EXECUTED

~
I/O PORTION

OF
PROGRAM

~
I/O OPERA TION

COMPLETE

!
PROGRAM

CONTINUED

Figure 6-1. Programmed Input/<Altp.It

SC/MP allows any memory-reference instruction to execute a programmed input/output operation. Peripheral
device controllers are assigned specific memory addresses, which when referenced by a memory-reference
instruction, execute the inp.lt/output operation. It is necessary that the memory addresses assigned to the
peripheral device be unique to the device, that is, no other device uses the same assigned memory addresses.
nor is there memory with the same addresses. Also. the device controller must contain the necessary logic to
decode its assigned addresses, then gate data on and off the data bus. By convention, memory addresses
X'7FFF and below are reserved for read/write or read-only memory; memory addresses X'8000 to X'FFFF are
reserved for peripheral device controllers. The user, however, can change this convention. as described in the
SC / MP Users Manual.

The actual program steps required to enable programmed input/ootp.It will depend on the design of the device
controller.

6-8

6.7.2 Interrupt Input/Oltplt

In certain cases, an input/outplt operation initiated by a program requires a significant length of time (many
milliseconds) for execution, during which the program might perform other tasks. In other cases, the fre
quency of input/output service that requires a certain input/output device might be such that it wruld be con
venient for the program to ignore the device unless it specifically requires service. Each of these situations
may be handled by taking advantage of the SC /MP interrupt system and employing interrupt input/output for
devices which have interrupt capability.

In figure 6-2, the program might initiate the input/output operation as part of its normal sequence of operation
and set a flag indicating that such action was taken. An input/output device that has interrupt capability will,
upon completion of an input/output operation, transmit an interrupt to SC/MP to indicate completion of the
operation. The executing program is then interrupted for the time required to service the interrupt.

Interrupt

Program Executing Continue Program Execution

Return from
Interrupt

Interrupt Service Program
Services Interrupt - Clears Flag

The flag may be employed by the original program to determine whether or not the input/output operation has
been completed and whether or not the input/output device is still busy.

When the input/output device has data available for executing program, it might also transmit an interrupt to
the CPU, causing interruption of the executing program for the duration of the executing program being executed.

Interrupt

Program Executing

Input/Output Operation

Continue Program Execution

Return from
Interrupt

Interrupt input/output requires a definite and specific sequence of events, irrespective of what peripheral device
is to be serviced; the sequence is as follows:

1. In order for an interrupt to be accepted by SC/MP, the Interrupt Enable (IE) flag (bit 3) in the
status register must be set and the interrupt system armed. The interrupt system is armed
when the IE flag is changed from 0 to 1 (by an lEN or CAS instruction) and the next instruc
tion is fetched and executed. If the interrupt is disabled (IE cleared), interrupt signals from
peripheral devices are ignored, and no interrupt input/output operation starts. The instruc
tion DINT disables interrupts.

2. Once an "interrupt has been received and accepted by SC/MP, the following steps occur automati
cally under control of SC/MP.

a. The instruction currently being executed is completed.
b. Interrupts are disabled (IE cleared). Therefore, no further interrupts are accepted by

SC/MP until interrupts are re-enabled.
c. The contents of the PC are exchanged with the contents of P3.
d. The instruction located at the location specified by the new (PC) + 1 is executed.

6-9

PROGRAM
BEING

EXECUTED

!
PROGRAM

INITIA TES I/O

~
PROGRAM

SETS FLAG

~
PROGRAM

CONTINUES

Figure 6-2. Interrupt Input/UltInt Initiation

3. The instructions at entry to the interrupt service routine must perform a number of housekeeping
tasks before the required input/outInt operation can proceed. Tasks, in order of normal execu
tion are as follows:

a. Save the contents of registers that will be used by the interrupt routine so they can be re
stored just before returning from the interrupt. Register contents are typically saved on
a stack, usually the same stack being maintained for subroutines.

b. Determine the source of the interrupt. The way this is done depends on the design of the
peripheral device controllers, but, usually, controllers are designed to respond to an
interrupt acknowledge signal by transmitting a data byte (or word) that identifies the source
of the interrupt. This acknowledge signal could be a particular address to which all in
terrupting devices respond.

c. Once the interrupt has been identified, jump to the routine that services the identified
device.

4. Execute input/outInt service routine of the selected device.

5. Restore the appropriate register contents that were saved in step 3a.

6. Return from the interrupt by enabling the interrupt, then exchanging the return address in P3
(step 2c) with the program counter, so the execution continues at the program instruction follow
ing the interrupt. The following example shows the technique to insure the contents of P3 upon
return from the interrupt.

6-10

6.8

6.8.1

RETURN:

INTSVC:

lEN
XPPC P3

<Service Routine>
JMP RETURN

USING THE STATUS REGISTER

General

;ENABLE INTERRUPTS
;INTERRUPT SYSTEM IS ARMED AFTER THIS
;INSTRUCTION IS FETCHED.
;INTERRUPT SERVICE STARTS HERE

The status register is an 8-bit register, where two bits automatically reflect the result of accumulator opera
tions; one bit is the interrupt enable, and the five remaining bits are sense bits or user flags. The Sense-A
inrut also serves as the interrupt request inrut.

7 6 5 4 3 2 1

CY/L I OV SB I SA IE F2 I F1

I

T

The status register bits are modified as indicated in table 6-1.

Table 6-1. status Register Bits

Flag Automatic Operation Special Instruction

CY/L Set/reset by arithmetic operations SCL sets
and rotate with link CCL resets

OV Set/reset by arithmetic operations --
SB Reflects input line --
SA Reflects input line --
IE Reset by interrupt 1EN sets

DINT resets

F2 -- --
F1 -- --
FO -- --

I
0

FO

User Flags

Interrupt Enable

Sense Inputs

Overflow

Carry/Link

CAS Instruction

Loads from AC7

Loads from AC6

Not affected, read only

Not affected, read only

Loads from AC3

Loads from AC2

Loads from AC1

Loads from ACO

All bits of the status Register except the sense inputs can be set or cleared by the CAS Instruction.

6-11

The CY/L and OV bits are automatically set or cleared according to the result of accumulator operations. as
described below. CY/L can also be set by the SCL Instruction or cleared by the CCL Instruction. The IE bit
is automatically cleared when an interrupt is accepted. It can be set by the lEN Instruction and cleared by the
DINT Instruction. The two sense bits reflect the state applied to the external sense pins. The 3 general
purpose flag bits are set or cleared only as directed by the CAS Instruction.

The Status Register is a passive depository of status information. and apart from the operations on CY /L. OV.
and IE described. all status operations (for example. testing of status or setting/clearing the overflow or flag
bits) take place in the accumulator. Thus. the normal sequence of status register operations is as follows:

1. Transfer status to accwnulator

2. Test/set/clear status

3. Return accwnulator contents to status register if update is required.

The contents of the Status Register may be tested by copying SR to AC. masking with a logical instruction. and
testing with a conditional jwnp as shown in the test for overflow example below:

CSA
ANI
JNZ

X'40
OVFL

;COPY STATUS TO AC
;CLEAR ALL BITS EXCEPT 6 (OV)
;IF OVERFLOW. JUMP

IndivIdual bits may be set or cleared using the following methods:

6.8.2

CSA
ANI
ORI
CAS

Arithmetic Operations

X'FE
2

;COPY STA TUS TO AC
;CLEAR FO.
;SET Fl.
;COPY AC TO STATUS

Arithmetic operations may be signed or unsigned. Consider first one byte. Unsigned. its numbering range is
as follows:

from 0:1.0 (X'OO)

to 25510 (X' FF)
00000000

11111111

Signed, the high order bit is 0 for + (plus). 1 for - (minus). and the numbering range is as follows:

+12710 01111111

00000000

11111111

10000000

6-12

6. S. 2.1 Arithmetic with Unsigned Data Bytes

Unsigned arithmetic uses the carry bit, but not the overflow bit. For example:

+X'2E
X'52

= X'SO

+X'AE =

X'52 =
= X'100

00101110
01010010
10000000

10101110
01010010
00000000

CY/L= 0, no carry. Note that OV would be
set, but the program is not concerned.

CY/L = 1. Note that OV would be cleared.

Consider the following subtraction using twos-complement arithmetic:

X'AE - X'52 = X'AE + X'52 + X'OI = X'AE + X'AD + X'OI = X'5C

+X'AE
+X'AD

X'OI
= X'5C

10101110
10101101
00000001
01011100

The code for implementing the above operation is as follows:

LDI
SCL
CAl
ST

OAE

052
ANS

CY /L = 1 answer positive. Note that OV = 1

X'52 - X'AE = X'52 +'.- X'AE + X'OI = X'52 + X'51 + X'OI = X'A4 = -X'5C

X'52 0 1 0 1 0 0 1 0
X'51 0 1 0 1 0 0 0 1
X'OI 0 0 0 0 0 0 0 1
X'A4 = 1 0 1 0 0 1 0 0

ones complement
twos complement

01011011
01011100
X'5C

The code for taking the twos complement is as follows:

SCL
XAE
LDI
CAE

o

CY/L = 0 answer negative so take twos
complement. Note OV = 1.

Rules for addition and subtraction using unsigned data bytes are as follows:

1. Ignore the OV bit.

2. When adding, tJ CY/L is set, add 1 to the next high-order digit. CY/L is automatically an
input to the add operation.

3. When Jlubtracting, if CY/L is set, the answer il?P9I>Jtiv!l.t !.f CY!L is cleared, the a~~w_e~ i~ __ _
negative jUld is present in its twos-complement fonn.

6-13

In multibyte arithmetic, the preceding three rules apply to the leftmost (terminal or high-order) byte. Between
lower~rder bytes, the CY/L bit is always treated as a carry into the low~rder bit of the next byte:

+ X'13E7
X'24C2

= X'38A9

00010011
00100100

11100111
11000010

o 0 1 1 1 0 0 O~ 1",1 0 1 0 01

CY/L= 1
Carry into next byte

6.8.2.2 Arithmetic with Signed Data Bytes

Since in signed arithmetic the high-order bit represents the sign, carries out of bit 7 different from carries
into bit 7 represent overflow.

When performing signed arithmetic, the rules are essentially the same as for unsigned arithmetic with the
following exceptions.

In a single-precision (one-byte) operation, or when operating upon the most Significant byte in a multibyte
operation, the overflow (OV) flag is set when an incorrect sign bit is generated as a result of the operation.

In performing multibyte arithmetic, the low~rder byte should be processed first and any carries generated
should be added into the next higher byte. This can be done automatically if the CY/L bit is not modified
between the two operations.

6.8.3 Overflow and Carry/Link

The overflow bit is set whenever an add or complement-and-add operation causes a different carry bit
into bit 7 from that out of bit 7; otherwise, it is not reset:

90
+ 117

207

76543210
+ 01011010

01110101
11001111

Bit Number
90

117
-49 signed twos complement

~carry out of bit 6, rut not out of 7 bit.
OV set to 1.

76543210
+ 01011010

00100100
01111110

LNO carry out of bit 6,
OV set to O.

Bit Number
90

...l2.
126

nor out of bit 7.

The overflow bit is useful with sighed arithmetic operations to indicate the generation of a result with an
incorrect sign.

In addition to being used in rotate operations when specified, the carry/link bit is set whenever an add,
decimal add, or complement-and-add operation causes a carry out of bit 7; otherwise, it is reset.

6-14

6.8.3.1 Add Operation with CY/L initially reset to 0

X'B4
+X'D6

+

76543210
10110100
11010110

Bit Number
-76
-42

1000 1 0 1 0 -118 signed twos complement

[2J ~ Carry out of bit 7; CY /L is set to 1.

X'34
+X'56

(Note that in this case OV woold be reset.
Ones are carried into and out of bit 7.)

76543210
+ 00110100

Bit Number
52

01010110 ~

1 0 0 0 1 0 1 0 -118 signed twos complement or 138 unsigned 8-bit binary

L No carry out of bit 7; CY/L is set to O.
(Note that in this case OV would be set.)

6.8.3.2 Decimal Add Operation with CY/L initially reset to 0

(Note positive integers assumed)

X'52
+ X'86

76543210
+ 01010010

Bit Number
52

10000110 ~

o 0 1 1 1 0 0 0 38
'---'

LCarry out of high-order digit; CY /L is set to 1.

6.8.3.3 Complement and Add Operation with CY /L initially set to 1

7 6 5 4 3 2 1 0 Bit Number
X'34 0 0 1 1 0 1 0 0 52
X'56 0 1 0 1 0 1 1 0 - 1 0 1 0 1 0 0 1 -86

1 1 0 1 1 1 1 0 -34

L No carry out of bit 7; CY/L is set to O.
(Note that in this case OV would be reset to o.)

6-15

Chapter 7

(FORTRAN) CROSS ASSEMBLER PROGRAM

7. 1 INTRODUCTION

krhe (FORTRAN) Cross Assembler Program assembles a source program on a host computer for subsequent
becution by an SC/MP Microprocessor. The assembler may be used on different host processors since it is
written in FORTRAN IV (USA Standard Language Subset). It requires the following minimum peripheral hard
ware complement: processor input unit, scratch unit, list output unit, and binary output unit. The scratch
unit is a mass storage device on which the source file must be written in order that the assembler be able to
rewind it for multipass processing.

The Assembler accepts free-format source statements and, in two passes, produces a load module (object
program) and a program listing.

Salient features of (FORTRAN) Cross Assembler Program are:

• Absolute load module generation.

• Conditional assembly facilities.

• Local symbols.

• Wide variety of assembly time operators (+, -, *, I, AND, OR, NOT).

• Diagnostic messages that include error position in source line.

Appendix I describes the use of the (FORTRAN) Cross Assembler and the related programs installed on the
General Electric nation-wide timesharing system.

7.2 INPUT AND OUTPUT

The input and output files (data sets) required by the assembler are listed below:

Fortran Logical
File Name File Record
(DDNAME} Function Format Length.

FT05F001 Source File (Input) Sequential 80 bytes
FT06F001 Listing File (Ultput) Sequential 121 bytes
FT09F001 Load Module (Output) Binary 36 words

7.2.1 Source File (Input)

The Swrce File may be input via punched cards, paper tape, or from the keyboard of a computer terminal.

7-1

7.2.2 Program Listing File (Output)

The Program Listing contains ANSI-standard carriage control characters.

At the end of the Program Listing, a symbol table is produced, a message is printed noting the number of
errors discovered by the assembler program, and the source and object checksums are printed; see below.

7.2.3

ABSP
0008

ALT6
F640

BRKMSG
FFF8

$2
101E

AC
0000

ALT7
F649

BRKPTH
OFFA

$2
110F

ACCUM
FFF3

ALTER
F5CF

BRKPTL
DFF9

•
•
•

$3
0000

AD!
FF55

ALTERR
F647

BRX1
FB4D

$3
105F

ALPHA
0001

BKSP
005F

BRX2
F856

$JAIL
1125

ALT1
F5E7

BRKAD
FFE6

CAN
0018

Symbol Table

t '--_________________ 0000 may indicate
undefined symbol

63 ERROR LINES 1--------------------___ Number of Errors
SOURCE CHECKSUM = 7 A 72 .. checksum

Load Module (Output)

The Load Module (LM) contains the object code produced from the source statements and loading information.
The LM file is written as an unformatted file.

7.2.4 Format of LM File

The LM file is composed of a series of records, each containing 36 words. The representation of these records
depends on the storage medium. There are three types of LM records:

Title Record (one per LM)

Data Record (variable number per LM)

End Record (one per LM)

The records are prodlced in the sequence illustrated in figure 7 -lAo Jndependent of the record type, the first
two words (figure 7-lB) in each record always have the same interpretation. The first word specifies the record
type and the length of the record body. The second word contains a checksum for error detection.

The Title Record identifies the load module by name and, optionally, by a descriptive character string. These
two items are supplied by the last. TITLE Directive Statement in the sauce program. If this directive is not
included, a default name (MAINPR) is used. If the default name is assigned, the qualifying character string is
empty. Figure 7-2 illustrates the format of the Title Record.

The Data Records contain the actual data and instruction bytes to be loaded into memorY. Each data record
contains the load address for the initial data byte of the record. Each time a discontinuity (empty area or
change""",of-page) occurs in a program, the current record is terminated and outputted, and a new record is
initiated. Figure 7-3 illustrates the format of the Data Record.

7-2

::

Record Word
Number

1

2

3

4

TITLE RECORD

DA TA RECORD 0

DATA RECORD m

END RECORD

7

RCD I -

=r } o to m Data Records

View A. LM File Format

5 0

LENGTH

CHECKSUM

RECORD

.
B8 ~I------_BOD_Y ~J

Notes

1. RCD specifies the type of record

RCD RECORD TYPE

o Title
1 Data
3 End

Bit Position

2. The CHECKSUM is formed by taking the arithmetic sum of all the words in the record body.

View B. General Record Format

Figure 7-1. LM File and General Formats

7-3

Record Word
Number

3
4
5
6
7
8
9

10
11

33
34
35
36

Record Byte
Number

3

4

5

6

36

7

-
-
-
-
-

-
-
-

~

1

PROGRAM NAME

DESCRIPTIVE
STRING

NOTE

0 Bit Positions

-
-
-
-
-

-
-
-

f
1. The program name and descriptive string are made up of 7-bit ASCD characters.

2. If there are more than 28 characters in the descriptive string, only the first 28 characters
are used.

Figure 7 -2. Title Record Format

7 o

LOAD ADDRESS (HIGH-ORDER)

LOAD ADDRESS (LOW-ORDER)

DA TA BYTE (1)

DATA BYTE (2)

::: co

DA TA BYTE (28)

Figure 7 -3. Data Record Format

7-4

The End Record marks the end of the LM file and specifies an entry address for the load module. The format
of the End Record is illustrated in figure 7-4.

The source checksum represents the sum (modulo-2 16) of all the characters, taken one at a time, in the program
source file. This sum is printed on the program listing following the symbol table printout.

The object checksum represents the modulo_216 sum of all the individual record checksums of the LM. This
sum is also printed on the program listing following the symbol table.

Record Byte
Number

3

4

5

6

7

8

9

36

7 o

ENTRY

'ADDRESS

SOURCE

CHECKSUM

OBJECT

CHECKSUM

-

l~ ____________ N_O_T_U_s_E_D ______________ ~r
Figure 7 -4. End Record Format

7.3 OBTA1N1NG AN OBJECT CARD DECK

Bit Position

To obtain a load module in card format, the user must execute the FORTRAN program PRLM8. This program
reads the assembler load module output file on FORTRAN file FT09FOOl (unit 9), and outputs card images to
FORTRAN unit 7, which is generally assigned to the card punch.

In a load module (LM) card deck, the first card contains !RLM in columns 1 through 4, and the following cards
each contain an LM record. Each word of the record is represented by two hexadecimal characters.

7-5

Appendix A

ANSI CHARACTER SET

Table A-I contains the 7-bit hexadecimal code for each character in the ANSI character set. The printable
characters in this set may be set up as program data by use of the • ASCII directive. The remaining characters
may be set up in hexadecimal constants with a • WORD directive. Table A-2 contains the legend for nonprint
able characters.

Table A-I. ANSI Character Set in Hexadecimal Representation

7-Bit 7-Bit 7-Bit 7-Bit
Character Hexadecimal Character Hexadecimal Character Hexadecimal Character Hexadecimal

Number Number Number Number

NUL 00 SP 20 @ 40 \. 60
SOH 01 ! 21 A 41 a 61
STX 02 " 22 B 42 b 62
ETX 03 # 23 C 43 c 63
EOT 04 $ 24 D 44 d 64
ENQ 05 % 25 E 45 e 65
ACK 06 & 26 F 46 f 66
BEL 07 ,

27 G 47 g 67
BS 08 (28 H 48 h 68
HT 09) 29 I 49 i 69
LF OA * 2A J 4A j 6A
VT OB + 2B K 4B k 6B
FF OC , 2C L 4C 1 6C
CR OD - 2D M 4D m 6D
SO OE . 2E N 4E n 6E
SI OF / 2F 0 4F 0 6F
DLE 10 0 30 P 50 P 70
DC1 11 1 31 Q 51 q 71
DC2 12 2 32 R 52 r 72
DC3 13 3 33 S 53 s 73
DC4 14 4 34 T 54 t 74
NAK 15 5 35 U 55 u 75
SYN 16 6 36 V 56 v 76
ETB 17 7 37 W 57 w 77
CAN 18 8 38 X 58 x 78
EM 19 9 39 Y 59 y 79
SUB 1A : 3A Z 5A z 7A
ESC 1B ; 3B [5B 7B
FS 1C < 3C \ 5C 7C
GS 1D = 3D] 5D ALT 7D
RS IE > 3E t 5E ESC 7E
US IF ? 3F - 5F DEL,RUBOUT 7F

A-I

Table A-2. Legend for Nonprintable Characters

Character Definition Character Definition

NUL NULL SO SHIFT OUT
SOH START OF READING; ALSO SI SHIFT IN

START OF MESSAGE DLE DATA LINK ESCAPE
STX START OF TEXT; ALSO EOA, DCI DEVICE CONTROL I

END OF ADDRESS DC2 DEVIC E CONTROL 2
ETX END OF TEXT; ALSO EOM, DC3 DEVICE CONTROL 3

END OF MESSAGE DC4 DEVICE CONTROL 4
EOT END OF TRANSMISSION (END) NAK NEGA TIVE ACKNOWLEDGE
ENQ ENQUIRY (ENQRY); ALSO WRU SYN SYNCHRONOUS IDLE (SYNC)
ACK ACKNOWLEDGE. ALSO RU ETB END OF TRANSMISSION
BEL RINGS THE BELL BLOCK
BS BACKSPACE CAN CANCEL (CANCL)
HT . HORIZONTAL TAB EM END OF MEDIUM
LF LINE FEED OR LINE SPACE SUB SUBSTITUTE

(NEW LINE): ADVANCES ESC ESCAPE. PREFIX
PAPER TO NEXT LINE FS FILE SEPARATOR
BEGINNING OF LINE GS GROUP SEPARATOR

VT VERTICAL TAB (VTAB) RS RECORD SEPARATOR
FF FORM FEED TO TOP OF US UNIT SEPARATOR

NEXT PAGE (PAGE) SP SPACE
CR CARRIAGE RETURN TO

A-2

Appendix B

OPCODE INDEX OF INSTRUCTIONS

Opcode Mnemonic Operation f.Lcycle. Page

00 HALT Pulse H-flag 8 5-19
01 XAE Exchange AC and Extension 7 5-14
02 CCL Clear Carry/Link 5 5-20
03 SCL Set Carry/Link 5 5-20
04 DINT Disable Interrupts 6 5-21
05 lEN Enable Interrupts 6 5-20
06 CSA Copy Status to AC 5 5-21
07 CAS Copy AC to Status 6 5-21
08 NOP No Operation 5 5-22
19 SIO Serial Input/Output 5 5-17
lC SR Shift Right 5 5-18
1D SRL Shift Right with CY/L 5 5-18
IE RR Rotate Right 5 5-18
IF RRL Rotate Right with CY/L 5 5-19
30 XPAL Exchange Pointer Low 8 5-16
34 XPAH Exchange Pointer High 8 5-17
3C XPPC Exchange Pointer with PC 7 5-17
40 LDE Load from Extension 6 5-14
50 ANE AND Extension 6 5-14
58 ORE OR Extens ion 6 5-14
60 XRE Exclusive-OR Extension 6 5-15
68 DAE Decimal Add Extension 11 5-15
70 ADE Add Extension 7 5-15
78 CAE Complement and Add Extens ion 8 5-16
8F DLY Delay 13-131593 5-22
90 JMP Jump 11 5-12
94 JP Jump If Positive 9,11 5-13
98 JZ Jump If Zero 9,11 5-13
9C JNZ Jump If Not Zero 9,11 5-13
A8 ILD Increment and Load 22 5-8
B8 DLD Decrement and Load 22 5-9
CO LD Load 18 5-5
C4 LDI Load Immediate 10 5-9
C8 ST Store 18 5-6
DO AND AND 18 5-6
D4 ANI AND Immediate 10 5-10
D8 OR OR 18 5-6
DC ORI OR Immediate 10 5-10
EO XOR Exclusive-OR 18 5-6
E4 XRI Exclusive-OR Immediate 10 5-10
E8 DAD Decimal Add 23 5-7
EC DAI Decimal Add Immediate 15 5-11
FO ADD Add 19 5-7
F4 ADI Add Immediate 11 5-11
F8 CAD Complement and Add 20 5-8
FC CAl Complement and Add immediate 12 5-11

B-1

Appendix C

MNEMONIC INDEX OF INSTRUCTIONS

Mnemonic Opcode Description flcycles Page

ADD FO Add 19 5-7

ADE 70 Add Extens ion 7 5-15

ADI F4 Add Immediate 11 5-11
AND DO AND 18 5-6

ANE 50 AND Extens ion 6 5-14

ANI D4 AND Immediate 10 5-10

CAD F8 Complement and Add 20 5-8

CAE 78 Complement and Add Extension 8 5-16

CAl FC Complement and Add Immediate 12 5-11

CAS 07 Copy AC to Status 6 5-21

CCL 02 Clear Carry/Link 5 5-20

CSA 06 Copy status to AC 5 5-21
DAD E8 Decimal Add 23 5-7
DAE 68 Decimal Add Extens ion 11 5-15

DAI EC Decimal Add Immediate 15 5-11

DINT 04 Disable Interrupts 6 5-21

DLD B8 Decrement and Load 22 5-9
DLY 8F Delay 13-131593 5-22

HALT 00 Pulse H-flag 8 5-19

lEN 05 Enable Interrupts 6 5-20

ILD A8 Increment and Load 22 5-8

JMP 90 Jump 11 5-12

JNZ 9C Jump If Not Zero 9,11 5-13
JP 94 Jump If Positive 9,11 5-13

JZ 98 Jump If Zero 9,11 5-13
LD CO Load 18 5-5

LDE 40 Load from Extension 6 5-14

LDI C4 Load Immediate 10 5-9
NOP 08 No Operation 5 5-22
OR D8 OR 18 5-6
ORE 58 OR Extens ion 6 5-14
OR! DC OR Immed iate 10 5-10
RR IE Rotate Right 5 5-18
RRL IF Rotate Right with Link 5 5-19
SCL 03 Set Carry/Link 5 5-20
SIO 19 Serial Input/Output 5 5-17
SR lC Shift Right 5 5-18
SRL ID Shift Right with Link 5 5-18
ST C8 store 18 5-6
XAE 01 Exchange AC and Extension 7 5-14
XOR EO Exclus i ve-OR 18 5-6
XPAH 34 Exchange Pointer High 8 5-17
XPAL 30 Exchange Pointer Low 8 5-16

XPPC 3C Exchange Pointer with PC 7 5-17
XRE 60 Exclusive-OR Extension 6 5-15
XRI E4 Exclusive-OR Immediate 10 5-10

C-l

t:1
I
~

Opcode

00
01
02
03
04
05
06
07
08
19
lC
10
IE
IF
30
34
3C
40
50
58
60
68
70
78

Single-byte

Mnemonic Byte 1
I

I 7 6 543 210

HALT o 0 0 0 000 0
XAE o 0 0 0 000 1
CCL o 000 0 0 1 0
SCL o 000 001 1
DINT o 0 000 100
lEN o 0 0 0 0 101
CSA o 0 000 1 1 0

I
CAS o 0 000 111
NOP o 0 0 0 1 000
SIO 000 1 1 001 I

SR 000 1 1 100 I

SRL 0001110 1
I RR o 0 0 1 1 110

RRL o 0 0 1 1 111
XPAL o 0 1 100 ptr
XPAH o 0 1 101 ptr
XPPC o 0 1 1 1 1 ptr
LDE 0100000--0-
ANE 010 100 0 0
ORE 010 1 1 000
XRE o 1 1 0 0 0 0 0
DAE o 1 1 0 1 000
ADE o 1 1 1 0 0 0 0
CAE 011 1 1 000

- - -

Opcode Mnemonic

8F DLY
90 JMP
94 JP
98 JZ
9C JNZ
A8 ILD
B8 DLD
CO LD
C4 LDI
C8 ST
DO AND
D4 ANI
D8 OR
DC OR!
EO XOR
E4 XRI
E8 DAD
EC DAI
FO ADD
F4 ADI
F8 CAD
Fe CAl
~---- L-________

Double-byte

Byte 1
7 6 5 4 3 2 1 0

100 0 1 1 1 1
100 1 0 0 ptr
1 0 0 1 0 1
100 1 1 0
100 1 1 1
1 0 1 0 1 0
101 110
1 1 0 0 orrrt ptr
110 001 0 0
1 1 0 0 11 1m ptr
11010mptr
1 1 0 1 0 100
1 1 0 111m ptr
11011 100
1 1 1 0 Olm ptr
1 1 1 0 0 100
1 1 1 0 11m ptr
1 110 1 100
1 1 1 101m ptr
1 1 1 1 0 100
1 1 1 111m ptr
111 1 1 100

---- ----- -- --- ---

Byte 2
7 6 543 2 1 0

disp

disp
-

-~
~
c:::
C":l
::j
a
~
I-%j

~
~

~
UJ

):
"C
"C
(!)
;:::J
P-
i<'
t:1

Appendix E

INSTRUCTION EXECUTION TIMES

Instruction
Read Write Total
Cycles Cycles Microcycles

Instruction
Read Write Total
Cycles Cycles Microcycles

ADD 3 0 19 JP 2 0 9, 11 for Jump
ADE 1 0 7 JZ 2 0 9, 11 for Jump
AD! 2 0 11 LD 3 0 18
AND 3 0 18 LDE 1 0 6
ANE 1 0 6 LDI 2 0 10
ANI 2 0 10 NOP 1 0 5
CAD 3 0 20 OR 3 0 18
CAE 1 0 8 ORE 1 0 6
CAl 2 0 12 OR! 2 0 10
CAS 1 0 6 RR 1 0 5
CCL 1 0 5 RRL 1 0 5
CSA 1 0 5 SCL 1 0 5

. DAD 3 0 23 SIO 1 0 5
DAE 1 0 11 SR 1 0 5
DAI 2 0 15 SRL 1 0 5
DINT 1 0 6 ST 2 1 18
DLD 3 1 22 XAE 1 0 7
DLY 2 0 13-131593 XOR 3 0 18
HALT 2 0 8 XPAH 1 0 8
lEN 1 0 6 XPAL 1 0 8
ILD 3 1 22 XPPC 1 0 7

JMP 2 0 11 XRE 1 0 6
JNZ 2 0 9, 11 for Jump XRI 2 0 10

If slow memory is being used, the appropriate delay should be added for each read or write cycle.

E-l

Statement

Address Directive

ASCII Directive

Byte Directive

Double-Byte Directive

End Directive

Form Directive

(
Conditional Directives <

List Directive

Local Directive

Page Directive

Space Directive

Title Directive

l

Appendix F

DIRECTIVE STATEMENTS - INDEX

Operator
Mnemonic

• AD DR

• ASCII

• BYTE

.DBYTE

• END

• FORM

.IF
• ELSE
.ENDIF

• LIST

• LOCAL

• PAGE

• SPACE

• TITLE

F-l

Operand Field

expression [, expres sion •••]

string [, string, ••• string]

expression [, expression, ••• expression]

expression [, expression, ••• expression]

[address]

symbol,exp [(exp)] , [exp [(exp)]]

expressionl [, expression2]
not used
not used

inunediate

not used

[string]

inunediate

symbol [, string]

Appendix G

PROGRAMMERS CHECKLIST

The following list of items is suggested for desk-checking a program before assembly.

1. Is the source program terminated by an . END Directive?

2. Is each label in the program terminated by a colon (:)?

3. Is each comment in the program preceded by a semi-colon (;)?

4. Is each string constant in the program set off on both ends by a prime (')?

5. Are all hexadecimal constants preceded by either X' or 0 (zero)?

6. For each. IF Directive in the program. is there a corresponding. ENDIF?

7. Are any symbols defined by two-level forward references? This is illegal.

8. Do transfer address operands consider memory page structure and PC pre-incrementation
(before instruction fetch) ?

9. Are the jumps relative to the current location specified in bytes?

G-l

Appendix H

PROGRAM DIAGNOSTIC MESSAGES

H.l INTRODU CTION

When a source program error is encountered by either the (FORTRAN) Cross Assembler or the (IMP-16) Cross
Assembler, an appropriate error message, together with a pointer, is printed in the output (object listing). The
pointer is a "?" character.

H.2 (IMP-16) CROSS ASSEMBLER ERROR MESSAGES

The (IMP-16) Cross Assembler only detects the first eight errors found in each statement. The error is
diagnosed and marked in the listing, in the following line, by an error message (described below) and a "?"
character under the probable error field. An example of a cross assembler error detection is shown in'
figure H-l.

158 1115 9COO
ERROR ADDRESS

JNZ BB-BASEl(P3)
?

Figure H-l. (IMP-16) Cross Assembler Error Detection, Listing Output

The following are the error messages:

1. ERROR MISSING ARG.

2. ERROR VALUE

3. ERROR ADDRESS

4. ERROR USAGE

5. ERROR SYNTAX

6. ERROR EXCESS ARG.

7. ERROR TBL OVERFLOW

8. ERROR UNDEFINED

This error indicates more arguments are required.

This error indicates value out of range or exceeds
field size.

This error indicates address out of range.

This error indicates a rumber of possibilities including:

a. A • IF nesting error
b. Symbol not previously defined which would affect

location coonter
c. illegal expression, for example, two operators in

sequence

Indicates an illegal character or improper statement
construction.

Indicates an existence of unprocessed arguments.

Indicates the following:

a. If nesting level exceeds 10
b. Number of local regions exceeds 64
c. Symbol table overflow

Used to indicate either an undefined symbol or undefined
instruction! di rective.

H-l

9. ERROR DUP. DEF.

10. ERROR POINTER

Duplicate definition of the symbol.

Indicates the following:

a. Pointer Register should have been specified rut
was not

b. Pointer Register 0 (PC) not allowed

H.3 (FORTRAN) CROSS ASSEMBLER ERROR MESSAGES

Each error is diagnosed and marked with a "?" character in the following line of the outpIt listing. The "?"
is placed under the probable error field. The error is also marked on the listing with an asterisk (*) in
column 1.

1. ATTEMPT TO REDEFINE VALUE OF SYMBOL

Symbol, assigned a value in assignment statement, is already defined or a symbol changed value
from pass 1 to pass 2.

2. CONDITIONAL ASSEMBLY ERROR

The conditional assembly directives do not balance. They must appear in sets of either .IF
.ENDIF or .IF-.ELSE-.ENDIF.

3. EXPRESSION VALUE EXCEEDS BOUNDS

The value of an expression is too large for field (for example, immediate operand> 255).

4. ILLEGAL DIRECTIVE NAME

The directive flagged is not one recognized by the assembler.

5. ILLEGAL EXPRESSION

During evaluation of an expression, an illegal operator/operand combination was discovered.

6. ILLEGAL POINTER FIELD

The given value of the Pointer Register must be 0, 1, 2, or 3.

7. ILLEGAL FORM SYMBOL

The specified symbol is not recognizable as a legal operator or a defined. FORM symbol, or
there was an error in the corresponding • FORM declaration.

8. ILLEGAL SYNTAX

Instruction has incorrect structure (for example, operator not followed immediately by operand
in an expression, .ASCn directive not followed by a 'string', illegal character in an expression).

9. INTEGER EXCEEDS LIMITS

A decimal integer with a value less than -32,768 or greater than 65,535 or a hexadecimal value
of more than four characters has been encountered.

10. LOCA TlON COUNTER OUTSIDE OF RANGE

The value of location counter exceeds 65,53510 (FFFFI6).

11. MULTIPLE DEFINITION

A symbol that appears in a • FORM statement or as a label is already defined.

12. OUT OF STORAGE

The maximum number of • FORM statements has been exceded.

13. SYMBOL XXXXXX UNDEFINED DUE TO SYMBOL TABLE OVERFLOW (Pass 1 Message)

The maximum number of symbols has been exceded.

H-2

14. TOO MANY LOCAL DIRECTIVES-

The maximum number of local directives has been exceded.

15. TOO MANY OPERANDS

More operands appear in a • FORM call than appear in the corresponding declaration. Too many
operands in instruction.

16. UNABLE TO GENERA TE ADDRESS

The memory reference instruction violates addreSSing limitations.

17. UNDE FINED SYMBOL

The symbol flagged is not defined in this program.

18. END OF MEMORY PAGE

The end of 4096-byte memory page has been reached.

H.4 OTHER ERROR CONDITIONS

If the assembly process is aborted by the operating system and a message is printed that indicates that an end
of-file condition was detected on the input file, the cause is probably omission of the • END directive at the end
of the source program.

H-3

Appendix I

(FORTRAN) CROSS ASSEMBLER (SAS) G. E. TIMESHARING OPERATING PROCEDURE

The (FORTRAN) Cross Assembler (SAS) is installed and available to users of the General Electric national
timesharing service under the program name, SAS$$$. In this section, instructions are given for (1) preparing
and editing source code using any of the standard General Electric editors, (2) assembling the source code into
SC/MP object code, and (3) converting the object code into media suitable for loading.

REFERENCES

1. Timesharing System Manual, General Electric Company, Palo Alto, California, Publication
Number 711223, Mark II

2. Command System, General Electric Company, Palo Alto, California, Publication Number
3501.011, Mark m Foreground Reference Manual

3. Editing Commands, General Electric Company, Palo Alto, California, Publication Number
3400.01F, Mark m Foreground Reference Manual

4. RMS Remote Media Services, General Electric Company, Palo Alto, California, Publication
Number 3710.04B, Mark m Foreground Reference Manual

Users need not be programmers. However, familiarity with the system is required. The General Electric
Timesharing System Manual (Reference 1) provides information concerning operation and should be used to
supplement the operating information contained in this appendix. The Command System Manual (Reference 2)
describes the operating commands needed to operate the timesharing system, and the Editing Commands Manual
(Reference 3) describes the commands needed to edit the SC/MP source code. Reference 4 contains informa
tion about the Remote Media Service provided by General Electric. This service, referred to in the text, may
be used to obtain card output.

1.1 TELETYPE CONFIGURATION RESTRICTIONS

If your Teletype is equipped with the Automatic Answerback facility, this facility must be disabled or faulty
object paper tapes may result.

I. 2 HOW TO OBTAIN SAS$$$

SAS$$$ is avai lable from the General Electric Timesharing Service. Contact the local representative of the
General Electric Timesharing Computer Service in your area and ask for validation on the NAQ54 catalog. A
local General Electric representative is listed in most telephone books under General Electric Company,
Timesharing Computer Service. If you are unable to locate a General Electric representative in your area,
call the Palo Alto, California, office of General Electric, Timesharing Computer Service.

L 3 HOW TO ACCESS THE COMPUTER

In all of the examples following, user input is underlined to distinguish it from the computer output. Pressing
the carriage return key is represented by @. The following procedure is used to access the General Electric
Timesharing complter.

1. Turn on the terminal. If the terminal can be set to LOCAL or LINE, set it to LINE.

2. Telephone the local General Electric Timesharing Complter.

1-1

3. When the ringing stops and a high-pitched whistle begins, place the telephone handset on the
acoustic coupler. Type the letter!!. or HELLO; then, press the carriage return key. The
terminal will reply with the following:

U#=

4. Type your user number, a comma, and yrur password; then, press the carriage return key. The
computer will accept your user number and password and will type the following:

ID:

Or, if the computer does not recognize yrur user number, and/or the password is incorrect,
the computer will type:

VALIDATION FAULT, RETYPE IT--

Retype your user number, a comma, your password, and the carriage return.

5. When the computer types ID:, type your project number or project identifier; then, press carriage
return. The computer will reply with:

SYSTEM-

6. Type in FIV (for FORTRAN IV) and carriage return. The computer will reply with:

NEW OR OLD

7. If you are setting up a new data file, type NEW; if you want to wolk on a previously saved file,
type OLD. Follow either entry with carriage return.

8. The computer will reply with:

ENTER FILE NAME --

If you are setting up a new file, assign it a name (up to 8 characters); if yru are recalling an old
file, type in the name of the file, followed with a carriage return •. The computer will signal that
the requested file is set up with the message:

READY

You now can set up the new file or perform an analysis on your old file. Each line of the file should have a line
number followed by at least one space. The contents of a line can be changed simply by retyping the same line
number followed by the new text desired as long as the file still is being actively processed (prior to the SAVE
Command). The computer automatically replaces the old line with the new one bearing the same line number.
When a file is completed, it should be stored permanently in the computer. To store a new file, type SAVE.
To replace an old file, type REPLACE. The computer saves the file and types rut READY. Editing cannot be
performed on a file that is printed out as the result of a LIST Command. Details of the data file are discussed
in the following paragraphs.

L 4 HOW TO SIGN OFF

To terminate the timesharing operation, one of the following operations may be performed:

1. Remove handset from the acoustic coupler and hang up.

2. Type in GOODBYE or BYE, followed with a carriage return. The computer will reply with the
total number of CRUs used, the terminal connect hours, and the number of input/output kilo
characters transmitted.

1-2

To tenninate a project, and immediately reestablish access to the computer for a new project, terminate 1he
old project by typing in !!. or HELLO, followed by a carriage return. The computer will terminate the old pro
ject and will set up the new project with the message:

U~

Repeat the sign-on procedures described in the paragraph titled, HOW TO ACCESS THE COMPUTER, from
step 4, onward.

1.5 OVERVIEW OF MAJOR PROGRAMMING ACTIVITIES

Figure 1-1 provides a flowchart overview of the use of the General Electric Timesharing Computer System for
preparing user SAS programs. The procedures for the major activities in the flowchart are described in the
following paragraphs. The major activities after logging into 1he General Electric System follow:

1. Create program.

2. Edit program.

3. Call assembler (SAS$$$).

4. Enter name of source program.

5. Answer questions regarding format of outpJ.t desired.

6. If required - obtain printout of assembled code.

7. If required - correct errors in assembled code.

8. If required, execute PRLM8$ to format object output for tape or cards, or PROM8$ to
punch PROM programming tape.

9. If required - use RMS to obtain output.

1.6 CREATING AND EDITING USER'S PROGRAM

In order to assemble a SC IMP program, the user first must enter his source program into the General Elec
tric Timesharing System, using its file creation capabilities. To do this, the user must execute the commands
shown below and, then, type in his source programs. In the example below, as in all examples in this manual,
the user input is underlined and comments are typed in lower case.

Ult NAQ54000@PSWD @
ID: IDENT
SYSTEM-FIV @
OLD OR NEW-NEW ~
Fll.E NAME-SOURCE

READY

SAVE SOURCE @
Type in your program at this point.
Save the file with the name SOURCE for future reference.

Once you have created and saved your program, yoo may wish to make changes to it. To do this, first call up
your program by typing in OLD and the name of yoor file. Then, to delete a line, merely type in 1he line lUlmber
and hit a carriage return; to add or change a line, type in the line number and the new information. When all
your changes are made, be sure to type REP to save the corrected version on yoor file. The following example
illustrates these techniques (see page 1-5).

1-3

YES NO

NO

·See RMS Manual (reference 4)

Figure 1-1. Preparing User's SAS$$$ Programs (General Electric
Timesharing System)

1-4

READY
OLD @
ENTER FILE NAME-SOURCE @
READY
15 ST
20 JMP
30 INCR: XAE

READY
REPSOURCE @
READY

2(P2)
NEXT

;CLEAR MEMORY LOCATION
;GET ANOTHER VALUE
;SA VE REMAINDER

Replace file SOURCE with this corrected version.

More sophisticated editing techniques are available and are described in the General Electric Manual, EDITING
COMMANDS, 3400. 01 F.

I. 7 RUNNING THE ASSEMBLER

After a source file is created, the SC/MP Assembler may be executed by typing:

RUN SAS$$$ @
SAS$$$ will prompt the user with various questions to determine:

1. The name of the source file

2. The name of the listing file

3. The name of the object file

After the program has assembled, the listing file may be listed either on-line on the TTY, or off-line on the
computer center printer. To list on the TTY, type:

OLD listname @
LIST @

The list file can then be purged by typing:

PURGE list name @

NOTE

If the break key is pressed during execution of
SAS$$$, the run will terminate immediately and
all scratch files created will be purged auto
matically.

I. 8 OBTAINING OBJECT CARDS OR PAPER TAPE

The output LM of the SC/MP assembler is stored on disk in binary format as described in section 7.2.3 of
this manual. To convert the LM to a loadable form on cards or paper tape the program PRLM8$ must be
executed.

PRLM8$ is executed by typing:

RUN PRLM8$ @
Upon initialization, PRLM8$ requests:

OBJECT AND OUTPUT FILENAMES, CARD/PPT

If the user desires card output, he should respond with the name of his assembled object file, the name of the
file which will contain his card image output, and the designator, CARD, in the foIlowing format:

objectfile, outputfile, CARD @

1-5

If the program is able to create the requested output file, the message

CREATED FILE outputfile

will be printed. otherwise, the message will be

UNABLE TO CREATE FILE outputfile STATUS=errornr

Where errornr may be looked up in the GE Timesharing manual, "FORTRAN IV SYSTEM ROUTINES", in the
section describing the CREATE command.

The system will signal completion of program execution by printing READY, at which time the user may make
an RMS request to obtain his cards.

If he desires tape output, he may enter only the name of his assembled object file, followed by two commas
and the designator, PPT, as follows:

objectfile, ,PPT @
The program will reply with

TURN ON PAPER TAPE PUNCH

and will punch the requested load module at the user's terminal.

I. 9 OBTAINING PROM PROGRAMMING TAPE.

The user may also execute PROM8$ to obtain, via his terminal, a BPNF-formatted PROM programming tape to
program either MM5203 PROMs (256 x 8) or MM5204 PROMs (512 x 8). This tape may be submitted directly
to Customer Service, National Semiconductor Corporation, to have either of the above PROMs programmed.

PROM8$ assumes the user's program has been preallocated to the correct locations in SC/MP memory at
assembly time and is organized such that the code and data for any 512-word block is contiguous within the
load module.

PROM8$ may be executed following an assembly by typing:

RUN PROM8$ @
Upon initialization, PROM8$ requests:

OBJECT FILE NAME

The user should enter the object file name of the PROM-programming program, followed by a carriage return.

The program then types:

FOR 5203 PROM, ENTER '2'; 5204 PROM, ENTER '4'

The appropriate response is either 2 or 4 followed by a carriage return.

After the requested load module is read into memory, PROM8$ notifies the user to:

TURN ON PAPER TAPE PUNCH

PROM8$ then begins immediate output of the requested tape.

The tape produced by PROM8$ is in standard "BPNF" format as described in the National Semiconductor
Corporation MaS Integrated Circuits Manual, April 1974. The tape will contain the following:

1. Up to 12 null characters (X'OO)
2. 32 rubout characters (X'FF)
3. Words 0 through 255 or 511 of page (i)
4. 32 rubout characters (X'FF)

This sequence is repeated for each 256 or 512 words.

1-6

Appendix J

(IMP-16) CROSS ASSEMBLER OPERATING PROCEDURE

J. 1 INTRODUCTION

The (IMP-16) Cross Assembler is a 3-pass assembler designed to run on an ...!MR::16P MJ~R~1Ji1.f~~s_s2!:.:.. The
assembler is available in 4K and SK versions. The two versions are similar but have different minimum mem
ory requirements and input/output facilities. The 4K assembler requires a minimum of 4K words of computer
memory. It uses paper tape or the keyboard for the source input and object module output, and the Teletype for
control input/output and for program listing. The map option for the 4K assembler produces an unsorted map.
The SK assembler requires a minimum of SK words of computer memory. In addition to the options available
on the 4K assembler, the SK assembler provides input and output facilities for a high-speed printer and a card
reader. The map option for the SK assembler produces a sorted map. The. FORM directive is included only
in the SK version.

The (IMP-16) Cross Assembler accepts free-format source statements from either the keyboard, a paper tape
reader, or a card reader (SK version) and produces an unlinked Load Module (LM) on paper tape and an object
listing on the Teletype or the high-speed printer (SK version).

J.2 LOADING THE ASSEMBLER

This section gives only the steps required to load the (IMP-16) Cross Assembler. The assembler is loaded
into memory using the Absolute Card Reader Loader (ABSCR), the Absolute Paper Tape Loader (ABSPT) or
the Disk Bootstrap Loader (DBOOT).

J.2.1 Absolute Card Reader Loader (ABSCR)

ABSCR is the stand-alone loader program that reads the assembler from cards into memory. In the IMP-16P,
ABSCR is resident in ROM.

The procedure for loading the assembler from the IMP-16P Card Reader into memory follows:

1. Place assembler (SCASM and SCASP) into card reader followed by !GO card and ready card reader.

2. Press INIT.

3. Set Mode Switch to PC.

4. Set Data Switches to X'7FOO.

5. Press LOAD DATA.

6. Set Mode Switch to PROG DATA.

7. Press RUN.

J.2.2 Absolute Paper Tape Loader (ABSPT)

ABSPT is the stand-alone loader program that reads the assembler from paper tape into memory. ABSPT
is resident in read-only memory (ROM) in the IMP-16. The procedure for loading the assembler from paper
tape follows:

1. Press INIT.

2. Place assembler tape in Paper Tape Reader.

J-l

3. Press LOAD PROG.

4. Turn on Paper Tape Reader.

5. After assembler is loaded, press HUN.

ABSPT checks only for a checksum error and halts if one is discovered. To try to load again, position the
paper tape at the beginning of the record in error, press HUN, and turn on the Paper Tape Reader.

J.2.3 Disk Bootstrap Loader (DBOOT)

DBOOT is a IMP-16P Floppy Disk Bootstrap Loader program resident on the Master Diskette. The procedure
for loading the assembler from disk follows:

1. Press IN IT .

2. Set Mode Switch to ACO.

3. Set Data Switches to contain the assembler disk address (initial sector number).

4. Press LOAD DATA.

5. Set Mode Switch to pc.
6. Set Data Switches to X'COOO.

7. Press LOAD DATA.

S. Set Mode Switch to PHOG DATA.

9. Press RUN.

J.3 INITIALIZING THE ASSEMBLER

Two entry points are provided for each version of the (IMP-16) Cross Assembler (in case recovery is required).

4K SK

START
NEW ASSEMBLY

2BO
2E3

S9E
8DA

Assembly program initialization is provided when the respective program is started at the START entry point.
The 4K version can accommodate approximately 175 symbols in its symbol table, while the 8K version can
accommodate approximately 715 symbols in its symbol table.

When the assembler program is loaded, rush RUN. The assembler program starts and the following message
is typed out:

NSC SC IMP ASSEMBLER
MEMORY =

This message is a request for the user to specify available memory for the assembler's symbol table. Three
forms of reply are accepted:

1. Default, by just pressing the carriage return key @ . The default condition is address 0 to
address 409510 for the 4K assembler, or address 0 to address S03110 for the SK assembler.

2. A continuous range of usable memory may be specified by entering the memory configuration,
in the form

a:b @
where "a" represents the lower limit of the specified memory range and ''b'' represents the
upper limit of the memory range. Both "a" and ''b'' are in 1024-word units, such that a
memory range specified as 0:8 represents a continuous memory region from address 0 to

J-2

address 819110 (8192 words); and a memory range specified as 2:12 represents a continuous
memory region from address 204810 to address 12, 288.J.O .

3. A memory range consisting of two disjointed regions is specified by entering the memory con
figuration in the form:

a:b,c:d @
where "a" and ''b'' are the same as described above, specifying the first region; "c" and "d"
represents the second region. This ability to specify two regions is provided so that the user
may reserve the contents of a memory range by specifying the memory below and above the
range while excluding the reserved memory. A reply of 0:4, 60:64 indicates a memory con
figuration of 0 to 409510 and 61,44010 to 65, 5351p•

The assembler uses this memory configuration information so that all memory that is not occupied by the
assembler itself will be used for the symbol table. These numbers may vary depending upon the latest
assembler release and the length of the user's symbols. Three words of symbol table are required for each
symbol which contains four or less characters. Four words of symbol table are required for symbols con
taining more than four characters.

J.4 SELECTING OPTIONS FOR PROGRAM ASSEMBLY

At the beginning of each assembly, the assembler initializes all of the default modes for the input, listing,
and output device selection. If an input, listing, or output device is not specified throogh a control option
command, the assembler uses the default mode for the facility in question. The default mode for all options
(if no option is specified) is as follows:

• Keyboard Input
• Full Listing Output on Teletype Printer
• No Object Module
• Symbol Map is output

Following the initialization of the default modes, the assembler prompts with a message to allow the operator
to specify optional devices or control options. The prompt message is as follows:

.ASM

The first command (DE) is used for system communication purposes. The remaining commands (Table J-l)
allow the user to select among the available assembler options (assuming the various resources are available).
Control options may be specified in any order and should be separated by commas. If an erroneous control
message is typed in, the assembler reinitializes and reprompts. If the programmer inadvertently requests
conflicting options within the same category (for instance, requesting both keyboard and card reader inputs),
the assembler accepts only the last entry. This facility may be used to change a requested option before the
carriage return key is pressed.

The assembler also permits the user to specify assembly control in his source program. This is done by using
the • ASM directive with the control options. If the • ASM directive appears in the source program, it is usually
the first record. However, it may appear anywhere in his program: for example, to change the source device.
Other than to change the soorce device, it is not recommended that the .ASM directive appear anywhere in the
program except at the first record. The following is a typical example of the • ASM directive:

. ASM OM, NC, DT0300

The (IMP-16) Cross Assembler normally requires three passes over the source program; however, if the
object listing is to be suppressed or written to the high:"speed printer, or if the load module is to be suppressed
or written to the diskette, only two passes are required. Pass two generates the program listing and pass three
generates the load module.

J-3

J.4.1 Disc Editor (DE)

This command causes immediate transfer to the DOS Disc Editor and takes priority over all other assembler
commands.

J.4.2 Disc Input (DI)

This command reads and assembles a source file from disc. The source file must have been previously written
to disc using EDIT16 or the DT command (see J.4.3\. The command is entered in the form "Din" - where 'n' is
the sector on which the source file begins. The sector number must have a leading zero if a hexadecimal number
is desired; otherwise, it will be assumed to be decimal. If the sector number is not specified with the command,
SCASM will assume that the source file begins at sector 020016.

Table J-l. Operator Selectable Options

Category Command Description 4K 8K
Ref

Section

KB Keyboard Input X X J.8

INPUT DEVICE
PT Paper Tape Input X X J.7
CR Card Reader Input X J.6
DI Diskette Input X J.4.2

INTERMEDIATE
DT

STORAGE
Diskette Temporary File X J.4.3

OBJECT OM Load Module to Paper Tape X X 7.2.4, J.ll
MODULE DO Load Module to Diskette X J.4.4

NL No Listing X X J.I0
LISTING EL Error Listing X X J.I0

NC No Comments X X J.10

MAP NM No Map X X J.10

LISTING DEVICE PR High Speed Printer X J.I0

SYSTEM DE Execute Disc Editor* X J.4.1
CONTROL

* Used alone, with no other options

J.4.3 Disc Temporary (DT)

This command causes a source file that is being read from cards or paper tape for the first pass of SCASM
also to be written to disc. For the remaining passes, SCASM reads from the disc, thereby eliminating the
re-reading of cards or paper tape. This command also establishes a source file that can be used by EDIT16.

The command is entered in the form ''DTn'' - where ''n'' is the sector where the source file is to begin. The
sector number must have a leading zero if a hexadecimal number is desired; otherwise, it will be assumed to be
decimal. If the sector number is not specified with the command, sector 020016 is assumed to be the starting
sector.

J-4

address 819110 (8192 words); and a memory range specified as 2:12 represents a continuous
memory region from address 204810 to address 12, 28BJ.0 .

3. A memory range consisting of two disjointed regions is specified by entering the memory con
figuration in the form:

a:b,c:d @
where "a" and ''b'' are the same as described above, specifying the first region; "c" and "d"
represents the second region. This ability to specify two regions is provided so that the user
may reserve the contents of a memory range by specifying the memory below and above the
range while excluding the reserved memory. A reply of 0:4, 60:64 indicates a memory con
figuration of 0 to 409510 and 61,44010 to 65,5351.0'

The assembler uses this memory configuration information so that all memory that is not occupied by the
assembler itself will be used for the symbol table. These numbers may vary depending upon the latest
assembler release and the length of the user's symbols. Three words of symbol table are required for each
symbol which contains four or less characters. Four words of symbol table are required for symbols con
taining more than four characters.

J.4 SELECTING OPTIONS FOR PROGRAM ASSEMBLY

At the beginning of each assembly, the assembler initializes all of the default modes for the input, listing,
and output device selection. If an input, listing, or output device is not specified throogh a control option
command, the assembler uses the default mode for the facility in question. The default mode for all options
(if no option is specified) is as follows:

• Keyboard Input
• Full Listing Output on Teletype Printer
• No Object Module
• Symbol Map is output

Following the initialization of the default modes, the assembler prompts with a message to allow the operator
to specify optional devices or control options. The prompt message is as follows:

.ASM

The first command (DE) is used for system communication purposes. The remaining commands (Table J-l)
allow the user to select among the available assembler options (assuming the various resources are available).
Control options may be specified in any order and should be separated by commas. If an erroneous control
message is typed in, the assembler reinitializes and reprompts. If the programmer inadvertently requests
conflicting options within the same category (for instance, requesting both keyboard and card reader inputs),
the assembler accepts only the last entry. This facility may be used to change a requested option before the
carriage return key is pressed.

The assembler also permits the user to specify assembly control in his source program. This is done by using
the • ASM directive with the control options. If the • ASM directive appears in the source program, it is usually
the first record. However, it may appear anywhere in his program: for example, to change the source device.
Other than to change the soorce device, it is not recommended that the .ASM directive appear anywhere in the
program except at the first record. The following is a typical example of the • ASM directive:

. ASM OM, NC, DT0300

The (IMP-16) Cross Assembler normally requires three passes over the source program; however, tf the
object listing is to be suppressed or written to the high:'speed printer, or if the load module is to be suppressed
or written to the diskette, only two passes are required. Pass two generates the program listing and pass three
generates the load module.

J-3

J.4.1 Disc Editor (DE)

This command causes immediate transfer to the DOS Disc Editor and takes priority over all other assembler
commands.

J.4.2 Disc Input (DI)

This command reads and assembles a source file from disc. The source file must have been previously written
to disc using EDJT16 or the DT command (see J.4.3l. The command is entered in the form "DIn" - where 'n' is
the sector on which the source file begins. The sector number must have a leading zero if a hexadecimal number
is desired; otherwise, it will be assumed to be decimal. If the sector number is not specified with the command,
SCASM will assume that the source file begins at sector 020016.

Table J-l. Operator Selectable Options

Category Command Description 4K 8K
Ref

Section

KB Keyboard Input X X J.8

INPUT DEVICE PT Paper Tape Input X X J.7
CR Card Reader Input X J.6
Dl Diskette Input X J.4.2

INTERMEDIA TE
DT

STORAGE Diskette Temporary File X J.4.3

OBJECT OM Load Module to Paper Tape X X 7.2.4, J.ll
MODULE DO Load Module to Diskette X J.4.4

NL No Listing X X J.I0
LISTING EL Error Listing X X J.I0

NC No Comments X X J.I0

MAP NM No Map X X J.I0

LISTING DEVICE PR High Speed Printer X J.I0

SYSTEM DE Execute Disc Editor* X J. 4. 1
CONTROL

* Used alone, with no other options

J.4.3 Disc Temporary (DT)

This command causes a source file that is being read from cards or paper tape for the first pass of SCASM
also to be written to disc. For the remaining passes, SCASM reads from the disc, thereby eliminating the
re-reading of cards or paper tape. This command also establishes a source file that can be used by EDIT16.

The command is entered in the form ''DTn'' - where ''n'' is the sector where the source file is to begin. The
sector number must have a leading zero if a hexadecimal number is desired; otherwise, it will be assumed to be
decimal. If the sector number is not specified with the command, sector 020016 is assumed to be the starting
sector.

J-4

J.4.4 Disc Object (DO)

This command allows the user to specify that an object module is to be produced (Pass 3 of SCASM) and
written to disc instead of being punched on paper tape (see J. 11).

The command is entered in the form "DOn" - where "n" is the beginning sector to which the object module is
to be written. The sector number must have a leading zero if a hexadecimal number is desired; otherwise, it
will be assumed to be decimal. IT the sector number is not specified with the command, the object module is
written to the sectors immediately following the source file. If the source file is not on disc, and the sector
number is not specified with the command, then the object file is written to disc beginning at sector 020016 .

J. 5 ASSEMBLING A PROGRAM

After the user enters the response to the. ASM directive, the source program is read from the input device
(either card reader, paper tape reader, diskette, or keyboard). The assembler makes two or three passes
over the source program. At the end of each pass, unless diskette is being used, the source must be reloaded
for the next pass. Because subsequent passes begin automatically, the user must exercise care to ensure the
correct input is read. If more than one program is being assembled using the card reader or the paper tape
reader as the source input, it might be wise to turn off the reader when the end of pass message is being printed,
reload the source, and then turn the reader back on. Obviously, if the user has only one assembly or if he is
entering the source from the keyboard or diskette, such precautions are unnecessary.

At the beginning of the third pass, if required, the assembly halts for the operator to turn on the paper tape
punch. After the operator turns on the paper tape punch, he strikes any key to continue. After assembling
a program, the assembler reinitializes and prompts for the next assembly.

For the user entering the source program from the Teletype keyboard, horizontal tab facilities are provided to
automatically position the Teletype carriage to the start of the operation field, the operand field, and the com
ment field. The operation is initiated by pressing the horizontal tab (HT) key on the Teletype keyboard. The
start of these fields are located at columns 9, 17, and 33, respectively. This facility may be used to improve
the clarity and order of the source listing.

J.6 CARD READER INPUT

A source program from the card reader contains one statement per card. Columns 1 to 72 contain the statement
and columns 73-80 may contain identification information which is ignored by the assembler. A semicolon (;)
causes immediate termination of the source statement scan. Otherwise, the source statement is terminated
after column 72.

J.7 PAPER TAPE INPUT

A source program from paper tape contains one statement per record. Carriage return characters must ter
minate each record, and the record may not contain more than 72 characters.

J.8 KEYBOARD INPUT

A source program entered from the keyboard should be formatted one statement per record. Carriage return
characters must terminate each record, and the record may not contain more than 72 characters.

The assembler prompts for each statement from the keyboard with a statement mtmber followed by an
asterisk (*).

J-5

J.9 KEYBOARD/PAPER TAPE SPECIAL EDITING CHARACTERS

Assembler input from the keyboard or paper tape allows the following editing characters:

NULL
RUBOUT
LINE FEED
4

ALT
CR

(00)
(FF)
(OA)
(5F)
(7D)
(OD)

Ignored
Ignored
Ignored
Delete previous character (backspace)
Delete source line
Terminates each source line

The above editing characters are processed as such, even if they appear with a character string.

J. 10 LISTING

:F'igure J-l illustrates a typical listing and map from the (IMP-16) Cross Assembler. Only the first
53 columns of each source statement are listed, although the entire source statement is processed.

If an Error Listing (EL) is requested, only those source statements in which an error is detected are listed
along with the appropriate error messages (see F. 2). Under this option no symbol map is out}:Ut.

If the No Listing (NL) option is specified, no output listing is generated.

If the No Comment (NC) mode of listing output has been specified, one of the two following conditions will
hold:

1. If the comment begins in column 1 of the card, the card is counted but is otherwise completely
ignored by the resident assembler and no other actions are taken.

2. If the comment begins in other than column 1, the line is numbered and listed up to, but not
including, the comment field.

J.ll LOAD MODULE (LM)

Each object module record is punched on paper tape in the following format:

8 null frames
Start of Text Character (02)
Object Module Record (see (7.2.4), Load Module (Output»
Carriage Return (OD)
Line Feed (OA)

The first record is preceded by 8 additional null frames and the last record is followed by 64 null frames.

NOTE

The term object module is used to describe the
output of the assembler program (excluding the
listing). The term load module is used when the
object module is being loaded for execution.

J-6

NSC S C/ 11P AS :3E t18L ER
l'iEMORY;:; 1-------------- MEMORY CONFIGURATION

IS DEFAULTED TO 0-4K

NEXT ASSEMBLY
*. ASM ~------------- ASSEMBLY CONTROL

OPTION
END PASS 1 SUUHC~ CK =C5BE

1
.------------------ SOURCE LINE NUMBER

.--------------- MEMORY LOCATION

t~------------VALUE

.-.
"- 0001 TfWE
:3 FFFF FALSE

0F00 DBASE

4 ':: i 000 07 START
49 HWi HEFF
50 1017
51

... c:-:
l. "_I i
.,; C' .-,
l ... ' r;; i i le' 3C SUBR :
oj" C' ("4 < i 1 E 05 .1 ... ' .0° 1

1 G 0 1 11 F 8El 1
i b i 1 1'-" "-1 nFE
iU i 123 C'FFE

2'39 ~003 '~f000 F0013
300 F005 9uF A F00i ;

30 1 1 000

.TITLE SC/MP,'SC/MP ASSEMBLER TEST'
=
=
=

C A::;
AC'C'R
= . +20

LOCAL
X PF'C
lEN
OLD
.J t1P
OR

.J t1P
j MP

Dil<

-1
0F30

['BASE

PC

H(.J OHN
AA-BAS
1~-2(F'3

Hl13 1
EFFF
START

(P3)
1 (P2 ;.

SOURCE
PROGRAM

VALUE ------.,1 Ir------ASTERISK nIDICATES SYMBOL NOT USED, ru, WOULD
SYMBOL -----, t t INDICATE UNDEFINED SYMBOL.

MAP
{

AA ~;FFE

A6 ?0B3
AC; 7F82
BASE2 8000
B B 2 F OF: 11
8B5 FOF.:t1 *
8CO'·,! FORt1 *'
NO ERROR LINIi::S

AS
AE
8A
8B
BB3
8Bb
Be.

END PASS 2 Sl.JURC~ CK. =C5BE
TURN PT PUNCH ON, PRESS RUN

7tuHl Ae 705E
7087 AF 7F7F
7FFF BASEl 7000
8BBB BBI FORM
FORM *' BB4 FORM *
FORM * Be 807F
8BB0 BE 8F7F

Figure J-l. Sample Listing of Assembler

J-7

	e12_00001
	e12_00002_page0001
	e12_00002_page0002
	e12_00002_page0003
	e12_00002_page0004
	e12_00002_page0005
	e12_00002_page0006
	e12_00002_page0007
	e12_00002_page0008
	e12_00002_page0009
	e12_00002_page0010
	e12_00002_page0011
	e12_00002_page0012
	e12_00002_page0013
	e12_00002_page0014
	e12_00002_page0015
	e12_00002_page0016
	e12_00002_page0017
	e12_00002_page0018
	e12_00002_page0019
	e12_00002_page0020
	e12_00002_page0021
	e12_00002_page0022
	e12_00002_page0023
	e12_00002_page0024
	e12_00002_page0025
	e12_00002_page0026
	e12_00002_page0027
	e12_00002_page0028
	e12_00003_page0001
	e12_00003_page0002
	e12_00003_page0003
	e12_00003_page0004
	e12_00003_page0005
	e12_00003_page0006
	e12_00003_page0007
	e12_00003_page0008
	e12_00003_page0009
	e12_00003_page0010
	e12_00003_page0011
	e12_00003_page0012
	e12_00003_page0013
	e12_00003_page0014
	e12_00003_page0015
	e12_00003_page0016
	e12_00003_page0017
	e12_00003_page0018
	e12_00003_page0019
	e12_00003_page0020
	e12_00003_page0021
	e12_00003_page0022
	e12_00003_page0023
	e12_00003_page0024
	e12_00003_page0025
	e12_00003_page0026
	e12_00003_page0027
	e12_00003_page0028
	e12_00003_page0029
	e12_00003_page0030
	e12_00003_page0031
	e12_00003_page0032
	e12_00003_page0033
	e12_00003_page0034
	e12_00003_page0035
	e12_00003_page0036
	e12_00003_page0037
	e12_00003_page0038
	e12_00003_page0039
	e12_00003_page0040
	e12_00003_page0041
	e12_00003_page0042
	e12_00003_page0043
	e12_00003_page0044
	e12_00003_page0045
	e12_00003_page0046
	e12_00003_page0047
	e12_00003_page0048
	e12_00003_page0049
	e12_00003_page0050
	e12_00003_page0051
	e12_00003_page0052
	e12_00003_page0053
	e12_00003_page0054
	e12_00003_page0055
	e12_00003_page0056
	e12_00003_page0057
	e12_00003_page0058
	e12_00003_page0059
	e12_00003_page0060
	e12_00003_page0061
	e12_00003_page0062
	e12_00003_page0063
	e12_00003_page0064
	e12_00003_page0065
	e12_00003_page0066
	e12_00003_page0067
	e12_00003_page0068
	e12_00003_page0069
	e12_00003_page0070
	e12_00003_page0071
	e12_00003_page0072
	e12_00003_page0073
	e12_00003_page0074
	e12_00003_page0075
	e12_00003_page0076

