

Complex Standards

MM5736 MOS/LSI 6 digit calculator

general description

The MM5736 employs three working registers to provide add, subtract, multiply and divide functions. It includes on-chip key debounce and interfaces directly with the keyboard matrix as shown in Figure 2 and 3. A one-of-six output provides the strobe signals necessary to enable the appropriate digit for display; segment data for each digit appears during the appropriate strobe. See Figure 1 for digit and segment timing. Leading zero blanking has been incorporated to conserve battery life. Average battery life is estimated to be between 10 and 20 hours depending upon battery quality, operating schedule and the average number of digits displayed.

With the addition of a single-pole slide switch, a decimal point may be lit at an appropriate digit in the display; e.g., the third digit will present a dollars and cents format for users who generally use the calculator to balance checkbooks or keep track of supermarket expenditures. (Figures 2 and 3 indicate this feature using the NSN66A LED display, which has a decimal point between the second and third digits.)

features

- Six digit display
- Four functions (+, -, X, ÷)
- Chain operations
- Auto summing, convenient counting by any radix, and auto squaring
- Floating negative sign indicator for true credit halance
- Three different error indications
- Leading zero blanking
- On-chip oscillator uses no external components
- Effective keyboard bounce protection
- Interfaces with keyboard directly
- 9.0V battery operation with a typical power dissipation less than 30 mW-resulting in a battery life in excess of 15 operating hours with normal use

absolute maximum ratings

Operating Temperature	0°C to +70°C Ambient
Storage Temperature	-55°C to +150°C Ambient
Voltage on Any Pin Relative to V _{SS}	+0.3V to -12V
Lead Temperature (Soldering, 10 seconds)	300°C

dc electrical characteristics

 V_{SS} – $6.5V \leq V_{DD} \leq V_{SS}$ – 9.5V~ (V_{SS} is always the most positive potential)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	$V_{DD} = V_{SS} - 9.5V,$ $T_A = 25^{\circ}C$		3.7	6.0	mA
Keyboard Scan Input Levels (K1, K2, K3) Logical High Level Logical Low Level	$V_{DD} = V_{SS} - 6.5V$ $V_{DD} = V_{SS} - 9.5V$	V _{SS} - 2.5		V _{SS} - 5.0 V _{SS} - 6.0	v v v
Digit Buffer Output Levels (D1 Through D6)					
Logical High Level Logical Low Level	$I_{OUT} = -1.2 \text{ mA}$ $V_{DD} = V_{SS} - 6.5 \text{V}$ $V_{DD} = V_{SS} - 9.5 \text{V}$	V _{SS} - 1.5 V _{DD} V _{DD}		V _{SS} V _{SS} - 6.0 V _{SS} - 7.0	V V V
Segment Output Current (Sa Through Sg)	$T_A = 25^{\circ}C$				
Source Current	$\begin{array}{c} v_{OUT} = v_{SS} - 3.8 v, \ v_{DD} = v_{SS} - 6.5 v \\ v_{OUT} = v_{SS} - 4.2 v, \ v_{DD} = v_{SS} - 7.25 v \\ v_{OUT} = v_{SS} - 7.8 v, \ v_{DD} = v_{SS} - 9.5 v \end{array}$	-3.0	-7.3	-15	mA mA mA

ac electrical characteristics

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Word Time (Figure 1)		0.42		1.60	ms
Digit Time (Figure 1)		70		267	μs
Interdigit Blanking Time (Figure 1)			4.0		μs
Digit Output Transition Rise and Fall Times	$C_{LOAD} = 100 pF$		2.0		μs
Keyboard Sensing Inputs (K1, K2, K3) High to Low Transition Time After Key Release	C _{LOAD} = 100 pF		4.0		μs
Key Bounce — Output Stability Time		2.8	7.0	11.4	ms
(The time a keyboard sens- ing input must be continuously higher than the minimum logical high level to be accepted as a key closure, or lower than the maximum logical low level to be accepted as a key release.)					

10

FIGURE 3. Optional Calculator Configuration with MM5736

keyboard bounce and noise rejection characteristics

The MM5736 calculator is designed to interface with low cost keyboards. These keyboards are usually the least desirable from a noise and false entry standpoint. When a key closure is sensed by the calculator, an internal timeout is started. Any peturbations which occur during the timeout will reset the timer to zero so that a key is only accepted as vaild after a noise-free time out period. Noise that persists indefinitely will inhibit key entry. Key releases are checked in the same manner.

Low cost conductor loaded elastomeric keyboards often have key-pressure versus contact resistance characteristics that can create almost continuous noise during "teasing" or low pressure key depressions. The MM5736 keyboard scanning circuitry can accept a series switch resistance up to 50 k Ω as a valid closure, which combined with the internal resettable debounce timer, insures reliable key operations under a variety of conditions and keyboards.

range of the calculator

The MM5736 is capable of displaying six significant positive digits and five negative digits:

 $-99999 \le \text{Display} \le +999999$

The display scans from right (LSD) to left (MSD). Digit 1 time (Figure 1) corresponds to LSD.

error conditions

The following is a list of error conditions which are displayed by the MM5736. If any of these conditions occur, the machine automatically locks out all key entries except CLEAR.

	Error	Display
(1)	Too many numbers entered	EXXXXX
(2)	Negative solution too large	EEXXXX
(3)	Positive Solution too large	EXXXXX
(4)	Divide by 0	EEEEEE

10

key description

Clear Key:

- a. Operation during number entry
 - 1. First depression functions as a clear entry when followed by a number reentry.
 - 2. Second depression functions as a clear all.
- b. Operation after function key will clear all registers.
- c. Power on: Two depressions are required at power on to clear the machine.

0 Through 9 Keys:

- a. First entry clears the display register and enters the digit into the least significant digit.
- b. Second through sixth entry shifts the display register left one digit and enters the digit into the least significant digit.
- c. Seventh entry shifts the display register right one digit and displays an E in the most significant digit of the display register.

Add Key: Depression of this key will add the number entered to the accumulator and display the results. Further depressions without number entry will result in a repeated addition of the entry to the accumulator.

Subtraction Key: Depression of this key will subtract the number entered from the accumulator and display the results. Further depressions without number entry will result in repeated subtractions of the entry from the accumulator.

Multiplication Key: Depression of this key will result in a multiplication of the number entered by the accumulator with the results being displayed. If no entry is made, the number being displayed will be squared.

Divide Key: Depression of this key will result in a division of the accumulator by the number entered, with the results being displayed.

examples

BALANCING A CHECK BOOK

Key	Display
с	0
35323	35323
+	35323
10018	10018
-	25305
9595	9595
-	15710
16000	16000
-	- 290
35000	35000
+	34710

examples (con't)

MULTIPLICATION

Key	Display	
С	0	
1000	1000	
+	1000	
4	4	
x	4000	

DIVISION

Key	Display
С	0
1000	1000
+	1000
·3	3
÷	333

CHAIN OPERATIONS

Key	Display
С	0
1500	1500
+	1500
400	400
-	1100
2	2
x	2200
7	7
÷	314

AUTO SQUARING

Key	Display
С	0
3	3
+	3
x	9
x	81

REPETITIVE ADD/SUBTRACT (AUTO SUMMING)

Key	Display
С	0
3	3
+	3
+	6
+	9
-	6
-	3

CLEAR ENTRY

Кеу	Display
С	0
3	3
+	3
4	4
С	0
5	5
+	8
С	0
9	9
+	9