
Application Notes/Briefs

SAVING ROMs IN HIGH·RESOLUTION DOT·MATRIX DISPLAYS AND PRINTERS

INTRODUCTION

Conventionally, the number of bits in a digital
character generator's read only memory is pro
portional to the number of dots in the character
matrix. That is, the ROM array ordinarily doubles
and redoubles in size as one scales up the resolu·
tion or changes from an upper·case to an upper·
case/lower·case font.

Fortunately, such progressions may not be reo
quired. Reorganizing the ROMs to suit the specific
application often save thousands of bits and
allows the designer to use smaller, faster, more
economical monolithic ROMs. As a simple example,
expanding the array in 32·character subsets rather
than the more conventional 64·character subsets
will enhance performance and save up to 25% of
ROM capacity in typical UC/LC applications.

Savings much greater than 25% are possible when
the matrix size reaches a point where several
monolithic ROMs are needed to store the font.
We have found a two·stage, column·generation
approach called "intermediate coding" to be much
more efficient than straightforward dot·matrix
generation. It exploits the fact that column
patterns tend to become highly redundant as the
matrix size increases.

One version of this new technique automatically
proportions character widths as in letterpress
printing. This gives each character a more natural
shape and eliminates the irregular spacings usually
seen around "I" and other narrow characters. Yet
the control logic is simple and the ROM savings
approach 40% at typical font sizes.

Such advantages are available immediately, without
development of special ROMs. The designs can
be implemented with standard MOS or bipolar
ROMs currently in production. In fact, inter·
mediate coding broadens the cost/performance
options by allowing a combination of MOS and
bipolar ROMs to be used.

DOT·CHARACTER FONTS

Dot-character styles ranging in complexity from
5 x 7 to 12 x 24 or more dots per character have
been developed to meet the human-engineering
standard of various industries using digital displays
and printers. The more popular sizes are listed in
Table I.

The 5 x 7 fonts, such as Figure 1, lead in applica
tions volume due to their use in low-cost data

TABLE I. Typical Dot-Matrix Character Fonts

SIZE AND DOTS PER THEORETICAL DESIGN PRACTICAL
SCANNING CHARACTER CHARACTER ROM EFFECTIVENESS DESIGNS

5x7
HOrizontal 35 64x7x5=2-1/2k 1.00 Fig.3

7x5
Vertical 35 64 x 5 x 7 = 2,560 1.00 Fig.3

7x9
Horizontal 63 64 x 9 x 7 = 4,032 0.67 Fig. 6

9x7
Vertical 63 64x7x9=4,032 1.00 Figs. 5 & 8

7x12&8x12
Horizontal 96 64 x 12 x 8 = 6,144 and 1.00 Figs. 6 & 7

96 x 12 x 8 = 8.216 1.00

12x7&12x8
64 Character Vertical 96 64x8x12=6,144 1.00 Fig. Be
96 Character Vertical 96 96 x 8x 12.= 9,216 1.00 Fig. 88

12 x 16

64 Character Horizontal 192 64 x 16 x 12'" 12.288 1.50 for Fig. 9A Fig.9A
96 Character Horizontal 192 96x 16x 12= 18.432 1.50 Fig. 9 Fig. 98

16 x 12
64 Character Vertical 192 64 x 12 x 16 = 12,288 1.50 for Fig. SA Figs. 6. 7.&9
96 Character VertIcal 192 96 x 12 x 16 = 18,432 1.50 for Fig. 98

24 x 12
64 Character Vertical 288 64)(12x24= 18,432 2.00 for Fig. 98 Figs. 6.7. & 9

64 x 13 x 10 to 64 x 13 x 16
64 Character Variable

208 64 x 13 x 16 = 13.312 3.06 for Fig. 10 Fig. 10
Font Width

13-51

J>
Z
I

00
c.n

(I)
I»
<
5'

CQ

::a o
3C
CII

5'
::I:
cS'
:::r
I

::a
CD

~
C
r+
0'
;:,

o
~

* !
)c'

o
iii'
'C
ii'
~
I»
;:,
Co

"'U ..
~
ill

~
G) .. c
';:
D..

"0
C
ca

~ ca
Q.
,!
Q

>< ';:
1U
:!:
~
Q
c o
~
~
G)

a:
I

.t:.
,~
::J:
,5
II)

:!: o
a:
c::D c
'> ca
(I)

an
00

I

Z
c(

13-52

•• .. 1 .-. .f.., I···· i·· i"· I· .. •
.·:.i ... ! • il·· ... IJ
...... • .1 •• •1 •• • I.... I ..

011 01 02 113 04 05 0& 01
000000 000001 000010 000011 0001011 0011101 OUOll0 000111

1 ••• 1 er
: :.L

10 11
001000 001001

I L.··I 1·.-: :-. 1 I··, .•. : : .• : ··1 . ••••••••••••• : II I ••• 1
12 13 14 15 16 11
~m ~rn rn~ ~m ~ru ~m

F:: 1:·1 Fa:: • :::. ·T· :i 11 :.: i .• ,· ...• i
• ••••• e. ••••• ;:

20 21 22 23 24 25 26 21
010000 0111001 010010 010011 010100 0111101 1110110 0111111

~:.:~ :y: ::::: ·
31! 31 J:l

011000 011801 011010

r ...
" 011 on

:
•

" 11111011

.. :
! •••
" 011101

.1. •
• : • ·1·" • • •

" 37 011110 0111T1

i i i J i •• .: •• :: .: :·1 ii
• i i· "I·· I· II =.:.:

42 43 44 4& 46 41
100000 100001 ~m mm ~~ ~m ~m mm

(..
1010/10

() ..
110000

)
" 1111 DOl

· .. :if:: •• 1 •• · " &3 11111010 101011

:1 ..
54

101100

.....
..

1111101

I.
56

11111111

.. :
••
" 101111

·i •
I •••• 1 •• ~ .: •• 1. : .. • ... 11 : , •••

.:. I
61 62 63 64 65 86 &1
ru~ mm rum m~ mm mm rum - ... = •• • •• •••• :::: ·:~I : :1 .•.

•• ••
I
• 71 10 11 11 14 15 16

111lI0II 111001 1I1UlO
73

111011 111100 1T111J1 111110 111111

(AI Upper-Case Font ,... .
•• :. :.. .! ' • • • • 1..1 I I • I ·"1:·.·: I:·:: ::.::

00 Ul " ~ M H ~ ~
oouoao 0000111 000010 000011 000100 DUll 101 000110 000111 : .:. ..:
•• ··1 I·· : .:: • •••• •• :.: •• .. : :.. I,. .:1: .•..• I I I .:.

10 11 12 13 14 1& 18 17
001000 001001 001010 001011 001100 1101101 001110 001111:. .:.:. .:.
I···! I :·11·: 11-: II :·1 r.··1 I I I I-I·!:. .:. ..: .:. .:.

m 21 un" ~ u V
1110080 01110111 010010 0111011 1110100 010101 11101111 010111

: ••• : r:·: .·i·' :.... • ... : :·r: r"· , ••• :
I:·:i ii·i iii 1···11 :·i I·: i I, II i·1 ..
~ 31 n n M ~ ~ 31

1111000 011001 011010 011011 011100 0111111 011110 011111

• • · · · :" : . .. · · . : . . :. t: : .: I ••• • ·r · ••• 1 : . • · .. . · . ·" • " " " 11100011 100001 100010 100011 100100 100101 1001111 100111

· · • . · · • · · . · .. · · · · r.·. : · · · · • • • • · . · · . . · · · . . . : ... •• I II : ...•. · · . · so 51 52 " 54 " " " 101000 101001 101010 101011 101100 101101 101110 101111
:. I: I: : •• I II I: : :... ····1:· • ••••• I .: .: :: ::: :

" 61 62 ~ " ~ ~ 67
1100110 110001 110010 110011 110100 110101 1101111 110111

: • · • . • .. · · · : · · · ···1 • · ·: ... I I · · · ... · • • . .
10 71 " 73 " 75 16 71

moDO 111101 111010 111011 111100 111101 111110 111111

(81 Lower-Case Font

FIGURE 1. ASCII Full Set Font of 1285 x 7 Characters

interface terminals (although some terminal manu
facturers are going to larger sizes in response to
complaints that 5 x 7 presentations cause eye
strain)_ In other applications, a standard is often
set by older printing techniques_ To cite a few
examples: business-machine users are accustomed
to typewriting; advertisers want characters with
"sales appeal" on their billboard displays; score
boards and traffic-control signs must be read
easily at a distance; and electronic printing systems
may have to simulate several metal type fonts_

The matrix size is frequently enlarged to improve
lower-case character definition in UC/LC applica
tions_ A 5 x 7 font typically grows to 7 x 9 for UC
and 7 x 12 for LC, as in Figure 2_ Likewise, 7 x 9
is expanded to 8 x 12 and 12 x 16 to 12 x 24 for
lower-cases_

IIl4S 12346 1234$ 1234S 12345 1234S
I •••• , . . o. , . o. , .

12346117

I ••••• ,. . , ,. .
~ :
, .
,~ .

· · · · • .. · · ·
. :

.. · · .. · . .. · · .. · · · · · · · .. · · · . · ·
12346&7 1234S17 1234S'7 1234517 · ::- .. : : e. : _. ••• • · .. . ·

FIGURE 2. UCILC Characters at 5 x 7 and 7 x 12
Matrix Sizes

At 5 x 7, it is most economical, as a rule, to pro
gram a "full set" of 128 UC/LC characters in
standard character-generator ROMs. The full set
in Figure 1 is stored in two 64-character MaS
ROMs. This provides a mass-production base and
equalizes access times. If the 32 special symbols
generated with the ASCII control codes are not
usable, they are simply blanked by disenabling
the lower-case ROM when the seventh ASCII bit
is "0." But if the font is scaled up to simulate
typewriting, for example, this practice becomes
wasteful since 96 characters would suffice.

Another compl ication is that many special ized font
sizes, such as 11 x 9, do not fit neatly into standard
ROMs made in building block sizes. In other
words, one cannot store the font in a minimum
sized ROM array without paying the extra costs
of custom ROM development or specialized low
volumn ROMs.

CHARACTER-GENERATOR ROMs

Consequently, character-generator ROMs have been
developed that adapt to a variety of font sizes.
They may not exactly fit the theoretical matrix
array at odd sizes. but that is easily offset by
the economy of parts standardization.

Two such MaS ROMs are outlined in Figure 3
with their addressing for 5 x 7 horizontal scanning
and 7 x 5 vertical scanning. The vertical-scan sub
system in Figure 4 shows the amount of support
logic typically required in a display.

r }""
OUTPUTS

"
CHARACTER Aa

CODE A. :
A,

.... : "
r'

USE 2 ROMs AND
APPLVA,TOC£

ROW R FOR 128 CHARACTERS ADDRESS Al

'"

(AI 5 x 7 Horizontal-5can, 64-Characters

" . ADDRESS r "
CHARACTER AJ

CODE A.

A,

A •

{''' COLUMN
ADDRESS CA2

C"

COLUMN ADDRESS

use 2 ROMI AND
APPLY A, TO C[
FOR 12B CHARACTERS

. ... : ~
:... ~ OUTPUTS

SCAN

1
(BI 7 x 5 Vertical-Scan, 64-Characters

FIGURE 3. MM5,240 and MM5241 Standard Character·Generator ROMs

INPUT
CHARACTER

DATA

lINF
COUNTER

LINE
DIVIDER

COLUMN
COUNTER

CHARACTER
GENERATOR

DOT/COLUMN
DIVIDER

lAXtS
MOO

OUTPUT REGISTER

PARAllEl
ENABlE

DOT RATE
CLOCK

FIGURE 4. Typical 7 x 5 Vertical-5can Display Generator Subsystem

The MM5240 expands straightforwardly in 64·
character increments to larger fonts, such as the
9 x 7 or 10 x 8 arrays in Figure 5A. An expansion
such as Figure 58 would be used to provide a full
set UC/ LC font. These expansions keep the
character rate the same as at 5 x 7, whereas
doubling the size of each monolithic ROM would
not.

32-CHARACTER BLOCKS

A similar expansion of the MM5241, as in Figure
6A. would provide 7 x 9 to 8 x 12 horizontal-scan
fonts. However, the direct 64·character expansion
places a ROM-enabling operation in the middle of
the character. Such operations are common in
large-font generator designs.

A simple solution to this problem is to "steal"
a character-address input, use it as a row-address
input, and then use a chip·enable input as a
character input (Figure 68). This provides a 32·
character or 64-character block enabled during the
between·characters spacing interval. A 32·character
block would be the only ROM required in a
system using only numbers and symbols.

However, the chief attraction of this conversion is
in UC/LC applications. Figure 7 shows how to
use three ROMs to generate 96 7 x 9 to 8 x 12
horizontal·scan characters-a 25% savings compared
with a "full set" expansion. The chip·enable inputs
are programmed to sense the sixth and seventh
cnaracter·address bits. External decoders aren't
needed.

If each ROM in Figure 7 is replaced with a parallel
assembly of three ROMs (24 outputs), the result
is a 24 x 12, 96-character vertical-scan generator
with the same character rate as at 8 x 12. In other
words, the 32-character approach maintains the
benefits of parts standardization and performance
up to a very high resolution.

Other ROMs can be used in this fashion. In Figure
8, the MM5227 TRI·STATE@and MM5288 256 x
12 ROMs are shown in expansions that comple·
ment those of the MM5241. These ROMs provide
access times well under a microsecond. For rates
in the nanosecond range, general-purpose bipolar
ROMs with four or eight outputs, such as the
DM8597 256 x 4 and DM8596 512 x 8 can be
worked into similar organizations.

13-53

» z
00
U'I

en
III
<
5'

CC

::D
o
3:
1/1

5'
::t
cC'
-:r ,
::D
~
1/1 o
2" ... c)'
::l

c
!a
~
III
)C'

C
iii'
'0
iii
<
1/1

III
::l
C.

"0 ...
5' ...
~ ...
1/1

II) ..
.$
c
'':::
Q.

"C
C
co

~
co
Q.
,~
Q

><
'':::
~
co
~

I
~ o
Q
c
o ..
::::I
'0
II)
Q)

a:
I

.&:.
,21
::I:

,5
II)

~
o
a:
c:n c

'S:
co

UJ

In
CO

I

Z
0(

_c:---

"

-----. COLUMN
I - OUTPUT

DM8590
PIS

REGISTER

010, 0 1 07) COLUMN
~~~~~~~~ ADDRESS · . , :-. : ~ 
• • • 4 ROM 
: •• : ~ OUTPUTS 

: : ! · . , 10 SPACE 

(A) 9 x 7 or 10 x 8 Vertical-Scan, 64-Characters 

PIS 

A,o-oHr.------' 

" 

(B) 9 x 7 or 10 X 8 Vertical-Scan, 12S-Characters 

FIGURE 5. Expansion of MM5240 to Larger Fonts 

PIS 

1/2 
CHARACTER o-.-If-+--.J 

CLOCK 

12345"78 ,. . '."} • • 0 0 1 •• 00,oADM 
•• eOl'N01 : ..• : m} 
• •• 001 

• .010 ROM. 
• ·~~!N02 

(A) 7 x 9 to 8 x 12 Horizontal-5can, 64-Characters 

" 

PIS 

OUTPUTS 

· · · · · . . -.! 

(8) 7 x 9 to 8 x 12 Horizontal-Scan, 64-Characters 

FIGURE 6. Conventional and Improved MM5241 Expansions to 8 x 12 

13·54 

ROW 
ADDRESS 



A, - As 0---.... -< 

R"" - RA,4 0--....... ...,.-< 

A,o-~~+--"'" 

OUTPUT 

OUTPUTS (EACH ROM) 

o 0 ... ..: .. i 
o 

CE PROGRAM FOR ASCII 

: 
• 00 ..... . .: .... 

ROW 
ADDRESS 

ROM NO.1 Ae = D. AJ = 0 (CAPITAL LETTERS) 

ROM NO.2 A6 = 1. AJ ~ 0 (NUMBERS. SYMBOLS) 
ROM NO. J A6 ~ 1. AJ = 1 (LOWER·CASE LETIERS) 

FIGURE 7. USing 32-Character Expansions for 7 x 12 or 8 x 12. 96-Character Generator 

II 

(A) Basic ROM 

OUTPUT 

CE 

OUTPUT 

(e) 12 x 16 Horizontal-Scan. 64-Characters (B) 9 x 7 to 12 x 8 Vartical-Scan. 9S-Charactars 

FIGURE 8. Addressing General.purpose ROMs as Character Generators 

» 
2 
Co 
U'I 

f/) 
CD 
< 
S' 
IC 

:JJ 
0 s: 
en 
S' 
:::t 
cS' 
:J 
I 

:JJ 
CD 
en 
0 
2" 
r+ 
c)' 

= c 
0 
r+ 
I s: 

CD 
r+ ... 
SC' 

C 
iii' 

" iii 
< en 
CD 

= Q. 

"U ... 
S' 
r+ 
CD ... en 

13-55 



~ 
! 
c 
.~ 

0.. 
"C 
C 
(II 

~ 
(II 

Q. 
.!!! 
Q 

>< 
.~ ... 
(II 

:! 
~ 
Q 

c o 
'.j:j 
~ 
(5 
III 
CD 
a: 

I 

..c 

.!? 
::t 
.S: 
III 

:! 
o 
a: 
C) 
c 
'> 
(II 

U'J 

In 
CO 

I 

Z « 

13-56 

INTERMEDIATE CODING 

Designs proportioned to the matrix size are not 
the most efficient at the larger font sizes. It pays 
to analyze the actual character patterns to deter· 
mine whether other organizations can be used. 

For example, the full-dot columns in such vertical
scan characters as b, B, d, D, H, T, etc., are 
usually identical. An upper-case font typically 
contains only 60 unique column patterns at 7 x 5, 
110 at 9 x 7, 120 at 11 x 9, and 122 at 16 x 12. 

CHARACTER [II, 
INPU1DAIA A7 o-.... H-t-----.... 

Theoretically, they could all have been unique, 
since there is a possible pattern variation ranging 
from 128 to 65,536 (2 7 to 216 ). UC/LC and 
horizontal·scan fonts are more variable than upper· 
case vertical·scan fonts, but they are still far from 
worst-case. 

This analysis led to the organization in Figure 9A. 
I nstead of doubling the 64 x 12 x 8 organization to 
produce fonts up to 16 x 12, it adds only a 2k 

MM52l1 
256_8 

COLUMN 
GENERATOR 

113456769101112 ...... . . · . · . : . .......• -
· . ........ 

· · · : 

PARALLEL 
TO SERIAL 

CONVERTER 

l!2COLUMN 
CLOCK = 1 

112 COLUMN 
CLOCK-II 

OUTPUT 
DATA 

(AI 12 x 16 Vertical Scan (UCI 

A, -II, o----.-l 

.. o-~~+--.... 
A,C>-<H++-----.J 

':&~: PIS 
COLUMN 

GENERATOR 

,n -------COLUMN CE 
CLOCK 

(BI 16 x 12, 96-Character Generator (UC/LCI 

FIGURE 9. Intermediate Coding Designs (MOS ROM Organizationsl 



ROM. Up to 128 unique column patterns are 
stored in 8·bit, half-column segments in the 
MM5231 256 x 8 ROM. These are accessed with 
7-bit intermediate codes selected with the input 
array and a half-column clock at a submultiple 
of the dot rate. The intermediate codes necessary to 
form each character are simply listed in character
generator fashion in the input code converters. 
At 16 x 12, the savings for an upper-case font are 
12k - 8k or 4 kilobits-33%. 

Since the 8-bit outputs of the MM5241 ROMs 
actually allow 128 unique columns to be selected, 
the savings could grow rapidly through several 
expansion levels even without further rearranging. 
If more than 128 unique column codes are re
quired the second ROM in the storing can be 
changed to possibly a 512 x 8 ROM (MM5232) 
therefore giving 256 unique columns which can 
be generated for the larger fonts and character 
group sets (96 characters or 128 characters). 

Assume a 16 x 12, 96-character requirement. 
MM5241 ROMs added as in Figure 9B would 
provide 192 unique column patterns and the 
savings would be at least 18k - 12k = 6k. 

It might be necessary at the 24 x 12 UC/LC size 
to use two MM5227 256 x 12 ROMs in parallel, 
but this would still save 27k - 15k = 12k (or 
perhaps 36k - 18k in a 128-character application, 
using four input and two output ROMs). The 
efficiency grows with font size because the column 
patterns become more redundant. 

At first glance, the organization appears to double 
the access time because there are two stages to be 
accessed in sequence. But since there is no feed
back, the stages can operate in a ripple mode. 
Thus, an 8-bit bipolar register can be inserted 
between the stages to temporarily store each 
intermediate code. This restores the overall access 
time to that of the slowest ROM in the series 
(e.g., less than a microsecond for MaS ROMs) and 
the character rate is essentially the same as that 
achieved with conventional ROM techniques. 

Alternatively, the output ROM, input ROM, or 
both may be bipolar to increase the rate. The 
DM8596 512 x 8 ROM fits most large-font 
geometries qu ite well and costs less than sub
assemblies of 1 k bipolar ROMs. Again, an inter
mediate register will maximize the rate. 

REPEAT-PATTERN CODING 

Some character styles have bold "double dot" or 
similar patterns that result in a high probability 
of the same column pattern repeating sequentially 
in the same character. This characteristic is common 
in "ticker tape" systems, large-panel and billboard 
displays, news bulletins broadcast to appear as a 
running line across a television picture, and so 
forth. Typical fonts exhibit less than 256 actual 
changes of column patterns through a 64-character 
sequence, not the worst-case of 320 at 7 x 5, 640 
at 10 x 8, and so forth. Therefore, an organization 

that holds the column output static until it has 
to change would be highly efficient. 

Figure lOis a practical design for upper-case 
fonts with 10 x 10 to 13 x 10 matrices. It saves 
nearly 40% of ROM capacity. Moreover, the 
matrix width varies with the character shape as 
can be seen in the example word LIMB. The 
characters look more natural and are evenly 
spaced. Column height is changed by programming 
the outputs to be used. 

Proportional spacing makes this organization an 
excellent choice for ink-dot spray printers and 
other "line of type" printing applications, as well 
as vertical-scan displays. 

This technique does not lend itself directly to 
raster-scan displays since characters are scanned 
sequentially on one raster line at a time rather 
than completing a character before starting a new 
character. To use th is technique on raster-scan an 
intermediate storage memory would be necessary 
for as a line memories. 

PROGRAMMING AND OPERATION 

Assume a nominal matrix size of 13 x 10. This 
takes a 256 x 16 ROM array. Each 16-bit output 
word contains a 13-dot column pattern, a 2-bit 
repeat code and, in the last word of a character, 
an EOC bit (end of character "1" bit). Address 
location 0000 0000 is reserved for an all-zero 
spacing column. 

The first address of each character is I isted in the 
small input ROM at locations where they wil\ be 
accessed by the standard code. The intermediate 
code will then be the starting address and the next 
column-select codes for each character will be 
generated sequentially by the logic. 

Suppose characters @ through K occupy locations 
0000 0001 through 0010 1111 in the main ROM. 
Then, L's three words occupy locations 0011 0000 
through 0011 0010, M starts at 0011 0011, and so 
forth. L takes three words at the 13 x 10 size 
since the 2-dot bar pattern can be repeated only 
four times with a 2-bit repeat code. If the columns 
were programmed 12 or less dots high, a 3-bit 
repeat code could be used. L would be generated 
with two words and single-pattern characters like 
"dash" with one word. This solution uses only 
2 x 16 bits of storage for the character Land 
compared with its present technique of lax 12 = 
120 bits. 

Now, let's generate LIMB. First, the standard code 
for L (e.g. 001 100) is converted to 0011 0000, 
which sets the address counter. The address counter 
access that word in the main ROM, and the repeat 
code in the output sets the master counter to 
time out in two column scanning intervals. 

L's first two columns are thus formed. At the 
master counter's terminal state, the address counter 
advances to 0011 0001, the master counter is reset 

13-57 

en 
III 
~, 
:::l 

CC 

::tI 
o 
s: 
1/1 

:r 
::I: 
cC' 
:r , 
::tI 
CD 
1/1 o 
i: ,.,. 
0' 
:::l 

o o ,.,. , 
s: 
III ,.,. .. 
)C' 

o 
iii' 
'tJ 
i» 
~ 
III 
:::l 
C. 

~ .. 
:r ,.,. 
CD .. 
1/1 



~ 
$ 
c: .;: 
0.. 

"C 
c: 
«I 

~ 
«I 
Q. 
.!!l 
C 
>< .;: 
+" 
«I 

~ 
I 

+" o 
C 
c: 
o . ~ 
:I 
'0 
II) 
Q) 

a: 
I 

.c: 

.21 
:I: 

.5 
II) 

~ 
o 
a: 
Cl 
c: .;; 
«I en 

to time out in four column intervals, the address 
counter advances again, and word 0011 0010 is 
accessed during four intervals. 

This last word includes an EOe bit. When EOe 
and the time-out state of the master counter 
coincide, gate 1 clears the address counter. Now 
address 0000 0000 generates the space pattern in 
two spacing columns. When the master counter 
reaches its second state, gate 2 enables the address 
counter's parallel preset inputs. Finally, the input 
ROM sets the counter to the star.ting address for 

.I and the process continues through I, M and B. 

Sl'ACE CODE 0000 

COUNTER OUTPUT 
(4 LSB) 

13 •• 
12 •• 
11 •• 
.0 •• , .. ...... ...... .. 
~ :: 
~ i: , .. 
2 •••••••••• 
1 •••••••••• 

COLUMNS 1234 S 6 7 8 910 

REPEAT CODE 1032103210 
(13xl0i 

Eoe CODE 0000001 , 1 1 

:: 
:: :: .. ...... ...... 

Proportional spacing is inherent. So is high-speed 
since the input ROM is a small bipolar array. The 
main ROM can be either MaS or bipolar general
purpose ROMs. This organization should also 
expand efficiently since the repeat probability 
tends to rise with matrix width. 

In printing applications involving more complex 
characters, the operational advantages might be of 
more interest than ROM savings. For example, two 
64 x 6 x 8 or 512 x 8 ROMs might be used as an 
Ue/Le generator with the ninth address input a 
direct shift control: 

.. . . ... . .. .... . .. . .... . .. . !! -:,:- ii 
:: :: 
:: :: 

....... ........ .. .. .. .. .. .. ::::::. .. .. .. .. .. .. .. . . . ....... . . ...... . 

(Repeat Pattern Character Quality and Coding Example) 

13-58 

CHARACTER [ 
DATA INPUT 

OM7488 

(2 REDI 

CHARACTER 
MEMORYo---------++-----.J 

CLOCK OUTPUT 

CLOCK o--------<lo+--------oO<>-------<t-------.... 
*NoteA: Repeat code grllUp. 

FIGURE 10. Repeat-Pattern Vertical-Scan Generator 


