

User's Manual of Graphic LCD "ET-NOKIA LCD 5110"

Specifications of LCD 5110

- 48 x 84 Dot LCD Display
- Serial Bus Interface with maximum high speed 4.0 Mbits/S
- Internal Controller No.PCD8544
- LED Back-Light
- Run at Voltage 2.7 -5.0 Volt
- Low power consumption; it is suitable for battery applications
- Temperature range from -25°C to +70°C
- Support Signal CMOS Input

LCD 5110 is 48 x 84 Dot LCD Graphic that has internal Controller/Driver "PCD8544" to control all displays and operations. Diagrammatic structure of internal Controller PCD8544 is shown as in figure 1.

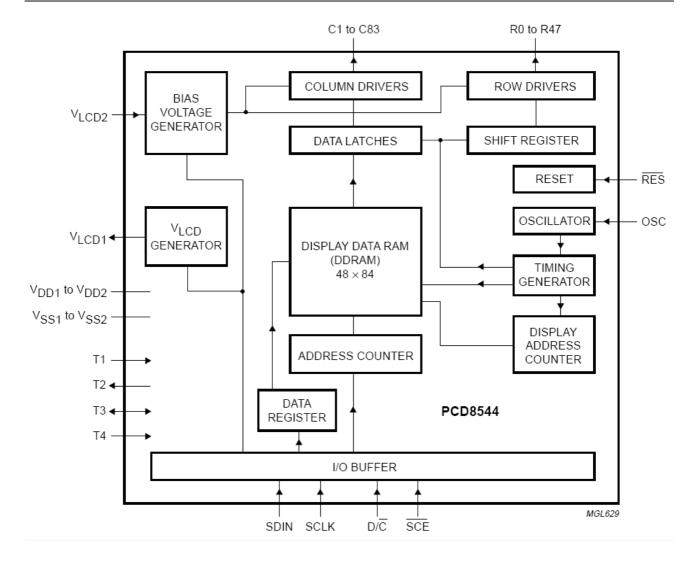


Figure 1 shows internal structure of Controller PCD8544.

Handling of LCD Address (Addressing)

The address arrangement of memory that is shown on LCD Display (DDRAM) is Matrix that consists of 6 rows (Y Address) from Y-Address 0 to Y-Address 5 and 84 columns (X Address) from X-Address 0 to X-Address 83. If user wants to access to the position of displaying result on LCD Display, must refer to the relationship between X-Address and Y-Address. Data that will be sent to display is 8 bit (1 Byte) and it will be arranged as vertical line; in this case, Bit MSB will be lower and Bit LSB will be upper as shown in the following picture;

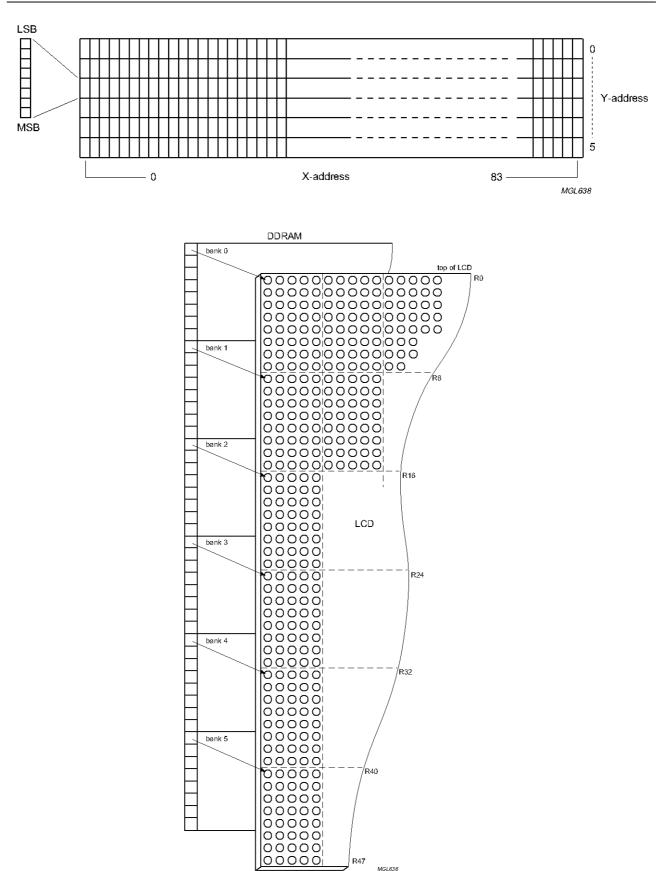


Figure 2 shows structure of Address and Data of LCD Display.

We can write data into the address of memory (DDRAM) continuously and values of X-Address and Y-Address will be increased automatically. In this case, there are 2 methods to configure the operation format of address; firstly, Vertical Addressing Mode (V=1), 1 value of Y-Address will be increased every time (see figure 3); and secondly, Horizontal Addressing Mode (V=0), 1 value of X-Address will be increased every time (see figure 4).

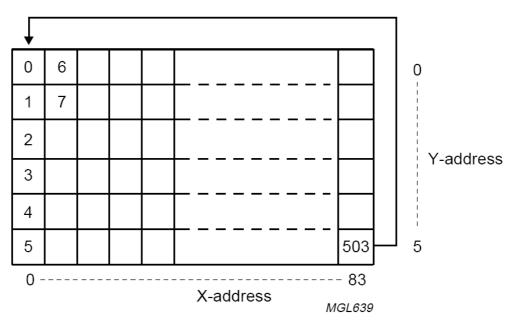


Figure 3 shows the increase of address value on the vertical line (Vertical Addressing Mode (V=1)).

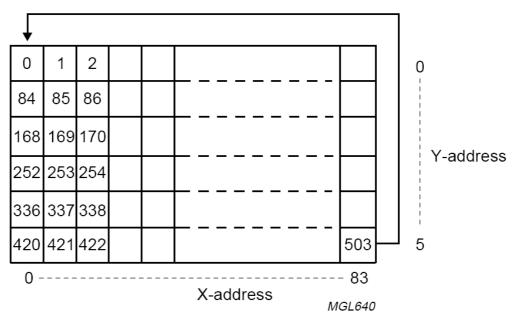


Figure 4 shows the increase of address value on the horizontal line (Horizontal Addressing Mode (V=0)).

Connection for controlling LCD Display

The signal connection for controlling operation of LCD is Serial format and there are several pins as follows;

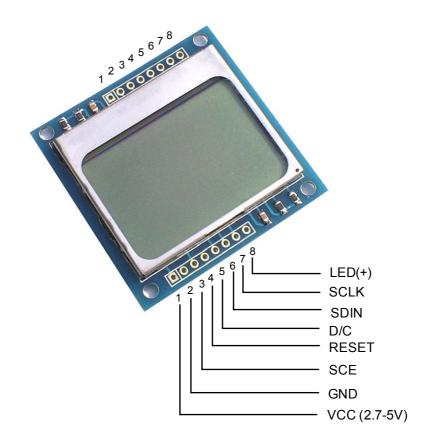
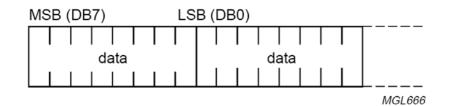


Figure 5 shows the pin positions of LCD.

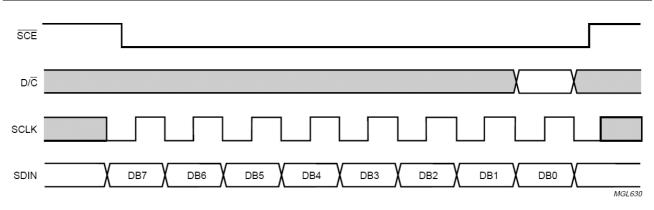
Table 1: Function of Pin LCD


Pin's Name	Functions								
1. VCC	Pin +VCC; using Power Supply from 2.7 - 5 VCD								

2. GND	Pin Ground
3. SCE	Pin CHIP ENABLE to control operation of Pin
	Controllers
4. RESET	Signal RESET for operation of LCD
5. D/C	Pin to configure the data formats between Data
	and Command.
6. SDIN	Pin DATA (SERIAL DATA LINE)
7. SCLK	Pin CLOCK (SERIAL CLOCK LINE)
8. LED	Pin to control operation of LED (Back Light)

Communication Format

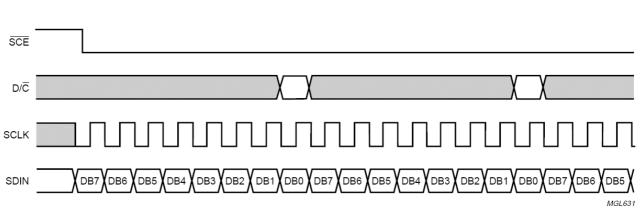
The format of command that is used to communicate with LCD is divided into 2 modes; Command Mode and Data Mode. In this case, it uses Pin D/C to divide and control signals; if D/C = 0, the data that is sent to LCD is Command (see more detailed information of commands in the Table 1); and if D/C = 1, the data that is sent to LCD will be Data and it will placed in DDRAM Memory (Display Data RAM) to be displayed on LCD Display. After 1 byte data has already been written, 1 value of DDRAM address will be increased automatically. The format of data will be serial and it will send MSB (The Most Significant Bit) first. Generally, its structure is displayed as follows;



General format of data stream.

Figure 6 shows the general format of Data.

There are 2 methods to send data into LCD; firstly, sending 1 Byte data in each time and secondly, sending many continuous bytes. The Data format is shown as follows;


Sending 1 byte data in each time

Serial bus protocol - transmission of one byte.

Figure 7 shows the format of sending 1 byte data in each time.

Sending continuous data (more than 1 byte)

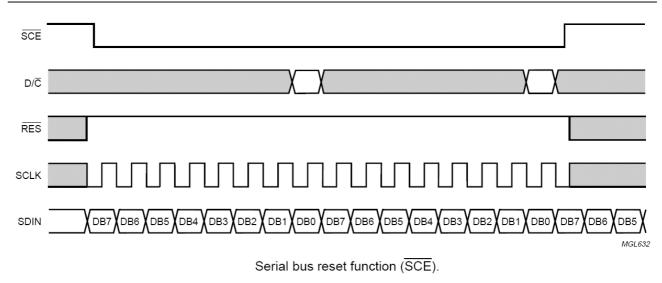

Serial bus protocol - transmission of several bytes.

Figure 8 shows the format of sending the continuous bytes data.

If Pin SCE is in the status of High, any change at signal SCLK is not be affected on LCD; user can send data to LCD when Pin SCE is in status of LOW only. Data will be shifted to Pin SDIN follows the interval of signal CLOCK (Rising Edge). In this case, LCD determines the data to be either Command Mode or Data Mode from status of Pin D/C; if D/C = 0, it is Command Mode; but if D/C = 1, it is Data Mode.

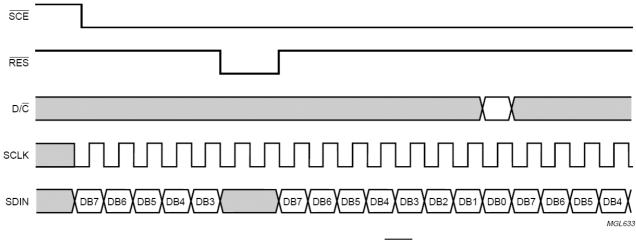
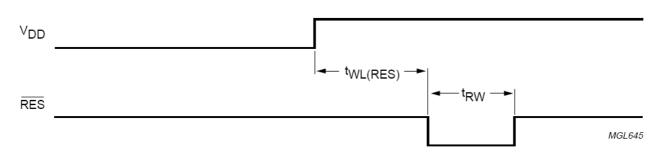

Pin SCE is still Status LOW (SCE = 0) until data byte will be sent successfully as shown in the figure 9.

Figure 9 shows diagram of signal RES that is in status of High.


The method to create Signal RESET (RES) is to create Pulse Low at Pin RES; if Signal RESET is occurred (RES = 0) while sending 8 bit data (1 byte) is not complete, data in that byte will be canceled. When status of signal RES is in High (RES = 1), at the next Signal Clock+ will be data that starts at Bit 7 of data again as shown in the figure 10.

Serial bus reset function (\overline{RES}).

Figure 10 shows diagram of signal RES that is in the status of RESET.

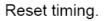
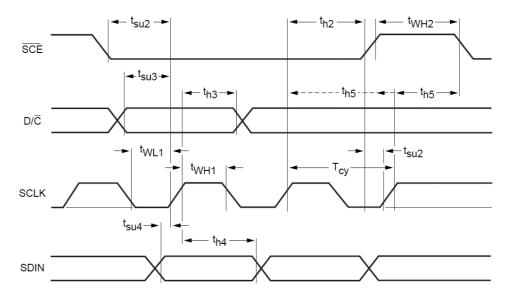



Figure 11 shows the period of occurring Signal RESET.

Serial interface timing.

Table 2: Parameter values

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
fosc	oscillator frequency		20	34	65	kHz
f _{clk(ext)}	external clock frequency		10	32	100	kHz
f _{frame}	frame frequency	f _{OSC} or f _{clk(ext)} = 32 kHz; note 1	_	67	-	Hz
t _{VHRL}	V _{DD} to RES LOW	Fig.16	0 ⁽²⁾	-	30	ms
t _{WL(RES)}	RES LOW pulse width	Fig.16	100	-	-	ns
Serial bus t	iming characteristics	·				
f _{SCLK}	clock frequency	V _{DD} = 3.0 V ±10%	0	-	4.00	MHz
T _{cy}	clock cycle SCLK	All signal timing is based on	250	-	-	ns
t _{WH1}	SCLK pulse width HIGH	20% to 80% of V _{DD} and	100	-	-	ns
t _{WL1}	SCLK pulse width LOW	maximum rise and fall times of	100	-	-	ns
t _{su2}	SCE set-up time		60	-	-	ns
t _{h2}	SCE hold time		100	-	-	ns
t _{WH2}	SCE min. HIGH time		100	-	-	ns
t _{h5}	SCE start hold time; note 3		100	_	-	ns
t _{su3}	D/C set-up time		100	-	-	ns
t _{h3}	D/\overline{C} hold time		100	-	-	ns
t _{su4}	SDIN set-up time		100	-	-	ns
t _{h4}	SDIN hold time		100	-	-	ns

Notes

1. $T_{\text{frame}} = \frac{f_{\text{clk(ext)}}}{480}$

2. $\overline{\text{RES}}$ may be LOW before V_{DD} goes HIGH.

3. t_{h5} is the time from the previous SCLK positive edge (irrespective of the state of \overline{SCE}) to the negative edge of \overline{SCE}

Table 3: Commands Sets for controlling LCD Display

INSTRUCTION	D/C	COMMAND BYTE								DESCRIPTION	
INSTRUCTION	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION	
(H = 0 or 1)											
NOP	0	0	0	0	0	0	0	0	0	no operation	
Function set	0	0	0	1	0	0	PD	V	Н	power down control; entry mode; extended instruction set control (H)	
Write data	1	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	writes data to display RAM	
(H = 0)											
Reserved	0	0	0	0	0	0	1	Х	Х	do not use	
Display control	0	0	0	0	0	1	D	0	E	sets display configuration	
Reserved	0	0	0	0	1	Х	Х	Х	Х	do not use	
Set Y address of RAM	0	0	1	0	0	0	Y ₂	Y ₁	Y ₀	sets Y-address of RAM; 0 ≤ Y ≤ 5	
Set X address of RAM	0	1	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀	sets X-address part of RAM; $0 \le X \le 83$	
(H = 1)	•	•	•	•		•	•	•		•	
Reserved	0	0	0	0	0	0	0	0	1	do not use	
	0	0	0	0	0	0	0	1	Х	do not use	
Temperature	0	0	0	0	0	0	1	TC ₁	TC ₀	set Temperature Coefficient	
control										(TC _x)	
Reserved	0	0	0	0	0	1	Х	Х	Х	do not use	
Bias system	0	0	0	0	1	0	BS ₂	BS ₁	BS ₀	set Bias System (BS _x)	
Reserved	0	0	1	Х	Х	Х	Х	Х	Х	do not use	
Set V _{OP}	0	1	V _{OP6}	V_{OP5}	V _{OP4}	V _{OP3}	V_{OP2}	V _{OP1}	VOPO	write V _{OP} to register	

Table 4: Detail of Parameter values from Table 3

BIT	0	1
PD	chip is active	chip is in Power-down mode
V	horizontal addressing	vertical addressing
Н	use basic instruction set	use extended instruction set
D and E		
00	display blank	
10	normal mode	
01	all display segments on	
11	inverse video mode	
TC ₁ and TC ₀		
00	V _{LCD} temperature coefficient 0	
01	V _{LCD} temperature coefficient 1	
10	V _{LCD} temperature coefficient 2	
11	V _{LCD} temperature coefficient 3	

Detail of Commands

Command NOP: No Operation

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

<u>Command</u> Function Set: It is command to set function for operations of LCD.

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	0	1	0	0	PD	V	Н

-PD: It is Bit to select operation mode. PD=0: Active Mode PD=1: Power-Down Mode

 $- \bm{\mathrm{V}} \colon$ It is Bit to select the format of increasing address value of (DDRAM) Memory.

V=0: It increases address value on the horizontal line (Horizontal Addressing Mode) see figure 4 above.

- V=1: It increases address value on the vertical line (Vertical Addressing Mode) see figure 3 above.
- -H: It is Bit to select format of using commands of SCD.
 - H=0: Using the basic commands (see more information from Table 3)
 - H=1: Using the additional commands (see more information from table 3)

<u>Command</u> Write Data: It is command to write data into DDRAM Memory to display result on LCD Display.

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

D5 D4 D3 D2 D1 D0

- D7-D0: It is 8 Bit data that must be written to display on LCD Display.
- Command Set in Basic Mode (H = 0)

D6

D7

<u>Command</u> Display Control: It is command to control displaying result on LCD Display.

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0

0 0 0 1 D 0 E

Table 5: Meaning of setting values in Bit D and E

D	Ε	Meaning
0	0	Data on the LCD Display is in status
		of blank or not display (Display
		Blank).
0	1	It displays results as usual (Normal
		Mode).
1	0	Data at every positions on the
		display is in status of ON.
1	1	Display data on LCD Display inversely
		(inverse Mode)

<u>Command</u> Set Y-Address of RAM: It is command to set value of Y-Address in RAM Memory; in this case, Y value is in the range of 0 to 5.

D/C	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 1 0 0 0 Y2 Y1	Y0	Y0
-------------------	----	----

Table 6: Meaning of setting values into Y2, Y1 and Y0

Υ	′2	Y1	Y0	Position of Y-Address
()	0	0	Bank 0
()	0	1	Bank 1
()	1	0	Bank 2
()	1	1	Bank 3
-	1	0	0	Bank 4
•	1	0	1	Bank 5

<u>Command</u> Set X-Address of RAM: It is command to set value of X-Address of RAM Memory.

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0		1	X6	X5	X4	X3	X2	X1	X0
---	--	---	----	----	----	----	----	----	----

Value of X-Address on LCD Display is in the range of 0 to 83; so, the method to set position address of X-Address of X6, X5, X4, X3, X2, X1 and X0 must be in the range of 0000000 (00H) to 1010011 (53H).

Command Set in addition mode (H = 1)

Command Temperature Control: It is command to control temperature to in the suitable range. From the be specification of LCD that is fluid; if it is in too low temperature, it maybe sticky and display results incompletely. So, it is necessary to compensate the temperature value to be in the suitable range; in this case, user must select value of coefficient V_{LCD} suitably. There are 4 values and can set them by Bit TC1 and TC0.

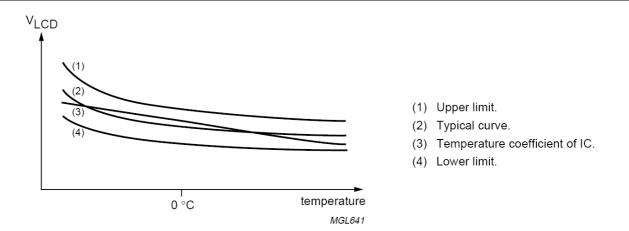


Figure 13 displays graph of the relationship between VLCD and temperature.

D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	TC1	TC0

Table 7: Meaning of setting Bit TC1 and TC0

TC1	TC0	Coefficient value of V _{LCD} and						
		Temperature						
0	0	V _{LCD} temperature coefficient 0						
0	1	V _{LCD} temperature coefficient 1						
1	0	V _{LCD} temperature coefficient 2						
1	1	V _{LCD} temperature coefficient 3						

<u>Command</u> Bias System: It is command to set value of Bias Voltage Level by Bit BS2, BS1 and BS0.

0

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

	0	0	0	1	0	BS2	BS1	BS0
--	---	---	---	---	---	-----	-----	-----

Table 8: Meaning of setting Bit BS2, BS1 and BS0

BS ₂	BS ₁	BS ₀	n	RECOMMENDED MUX RATE
0	0	0	7	1 : 100
0	0	1	6	1 : 80
0	1	0	5	1 : 65/1 : 65
0	1	1	4	1:48
1	0	0	3	1 : 40/1 : 34
1	0	1	2	1:24
1	1	0	1	1 : 18/1 : 16
1	1	1	0	1 : 10/1 : 9/1 : 8

Table 9: Bias Voltage

SYMBOL	BIAS VOLTAGES	BIAS VOLTAGE FOR 1/8 BIAS
V1	V _{LCD}	V _{LCD}
V2	(n + 3)/(n + 4)	$7_{8} \times V_{LCD}$
V3	(n + 2)/(n + 4)	$6_{8} \times V_{LCD}$
V4	2/(n + 4)	$^{2}\!$
V5	1/(n + 4)	$1/_8 \times V_{LCD}$
V6	V _{SS}	V _{SS}

<u>Command</u> Set V_{OP} : it is command to set voltage for V_{LCD} (Voltage Operation).

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	

1 V_{OP6} V_{OP5} V_{OP4} V_{OP3} V_{OP2} V_{OP1} V_{OP0}

User can set it from Bit V_{OP6} – V_{OP0} and can calculate value of Voltage V_{LCD} from following equation;

VLCD = a + (VOP6 to VOP0) x b

Coefficient value
$$a = 3.06$$

 $b = 0.06$

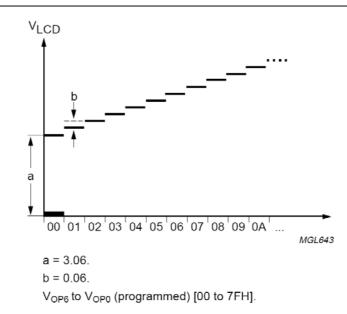
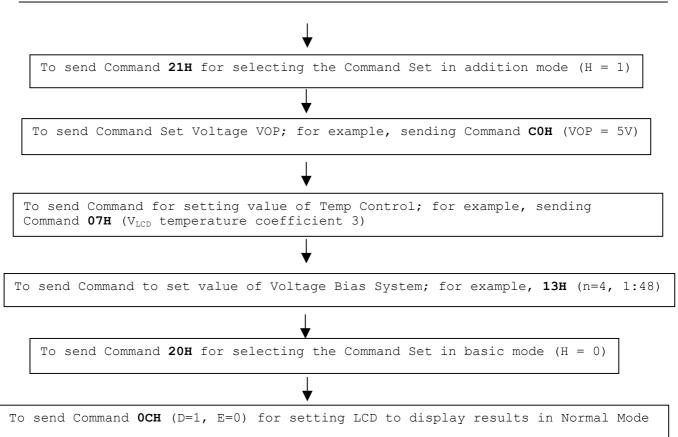


Figure 14 shows graph of Voltage VLCD from Parameter a and b.

Example: If user wants value of V_{LCD} at 5 volt
5 = 3.06 + (VOP6 to VOP0) x 0.06
(VOP6 to VOP0) = (5 - 3.06) / 0.06
(VOP6 to VOP0) = 32.33 approximately 32 (20H) or 0100000B

So, the command that will be sent to LCD to set value of VOP is **11000000B** or **COH**.

NOTE: Do not set value of VOP too high, the maximum voltage of VLCD is not higher than 8.5 volt.


Initial recommendation to write program for LCD applications

The method to write program for controlling operation of LCD whichever Microcontroller family or number is the same because user must writes program to create signals for controlling operation of LCD. If using function SPI, we recommend user to use Mode MSB First.

The method to write program for controlling operation of LCD is to set operation of LCD first or called "Initial LCD". Normally, its operation order is;

To create signal RESET LCD

After the procedure of Initial LCD is completely, user can write program and send data to display at positions of LCD. Generally, user must specify the required positions of X-Address and Y-Address to display results first.

For example, setting position X = 0, Y = 0 as follows;

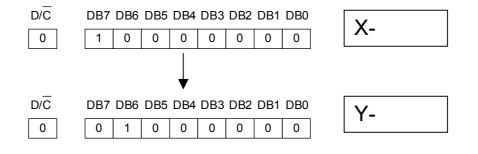


Table 10: Example of creating characters on LCD Display

0750				SERIA	LBUS	BYTE					
STEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAY	OPERATION
1	start					1					SCE is going LOW
2	0	0	0	1	0	0	0	0	1		function set PD = 0 and V = 0, select extended instruction set (H = 1 mode)
3	0	1	0	0	1	0	0	0	0		set V _{OP} ; V _{OP} is set to a +16 × b [V]
4	0	0	0	1	0	0	0	0	0		function set PD = 0 and V = 0, select normal instruction set (H = 0 mode)
5	0	0	0	0	0	1	1	0	0		display control set normal mode (D = 1 and E = 0)
6	1	0	0	0	1	1	1	1	1	MGL673	data write Y and X are initialized to 0 by default, so they are not set here
7	1	0	0	0	0	0	1	0	1	MəLs74	data write
8	1	0	0	0	0	0	1	1	1	Mal675	data write
9	1	0	0	0	0	0	0	0	0	Mals75	data write
10	1	0	0	0	1	1	1	1	1	Milisio	data write

Table 10 (Continue): Example of creating characters on LCD Display

STEP				SERIA	L BUS	BYTE				DISPLAY	OPERATION
SIEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAT	OPERATION
11	1	0	0	0	0	0	1	0	0	M3L677	data write
12	1	0	0	0	1	1	1	1	1	MGL678	data write
13	0	0	0	0	0	1	1	0	1	M3L579	display control; set inverse video mode (D = 1 and E = 1)
14	0	1	0	0	0	0	0	0	0	Mals79	set X address of RAM; set address to '0000000'
15	1	0	0	0	0	0	0	0	0	MGL680	data write